UV EB SOLUTIONS THAT DRIVE GHG SAVING AND SMALL FOOT-PRINT AUTOMOTIVE PAINT SHOPS

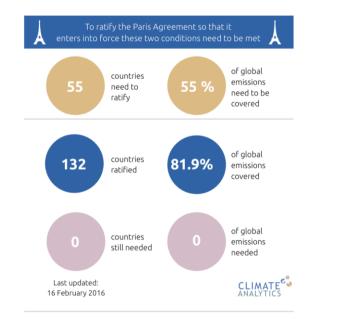
Mary Ellen Rosenberger – Founder/ Managing Partner, BaySpring Solutions LLC Paper - 17M-0476

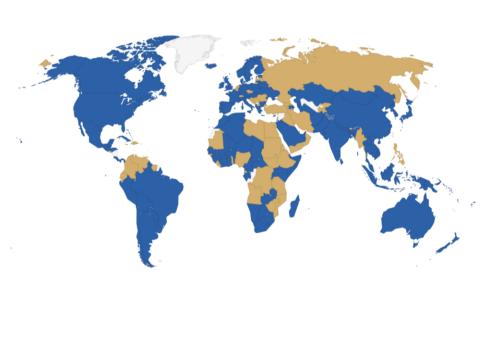
April 4, 2017

Global Goals GHG Reduction – Paris Accord

United Nations Framework Convention on Climate Change

The Paris Agreement's central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius.




visit http://www.un.org/sustainabledevelopment/climate-change

Global Goals GHG Reduction – Paris Accord

United Nations Framework Convention on Climate Change

As of 16 February 2017: 194 Parties signed the Agreement, 132 Parties ratified.

Automotive Industry Goals GHG Reduction

https://www.globalfueleconomy.org/media/203446/gfei-state-of-the-world-report-2016.pdf

January 31, 2017 Categories: GFEI Partner Updates, Air Quality

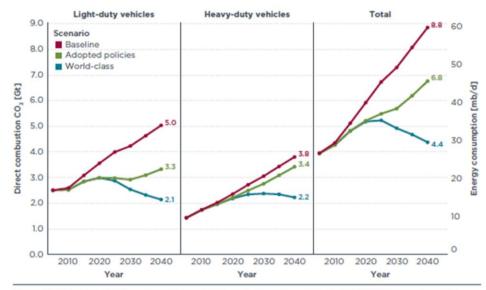
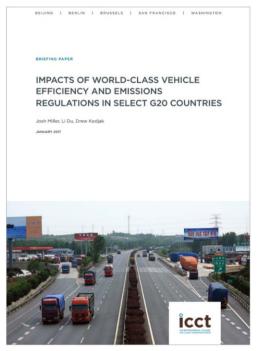
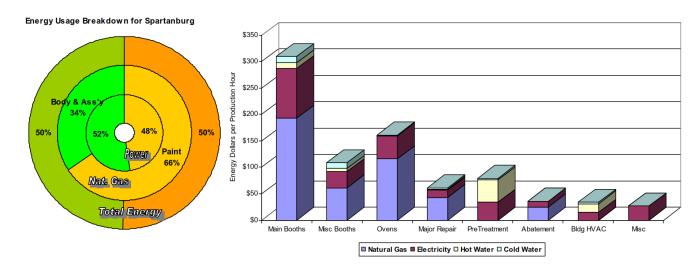



Figure ES-1. Direct combustion CO₂ emissions of light- and heavy-duty vehicles in TTG+EU member states under baseline, adopted policies, and world-class efficiency scenarios, 2005-2040. Figure shows historical and projected emissions for Australia, Brazil, Canada, China, the EU-28 (including TTG members Germany, Italy, and the United Kingdom), India, Japan, Mexico, the United States, and Russia.

ICCT's new report: Impacts of World-Class Vehicle Efficiency and Emissions Regulations in Select G20 Countries.

Standard Auto Paint Shop impact on Energy Use (GHG Emissions)


Auto Paint Shop

- Environmental Impact
- Electrical 48%/ Natural Gas 66% -
- Lean Manufacturing

 Small Foot Print

Dürr Study – BMW Spartanburg Plant

- Paint Shop confirmed as single largest energy consumer
- Process Equipment Consumption characterized

The Role of Ultraviolet and Electron Beam Cure

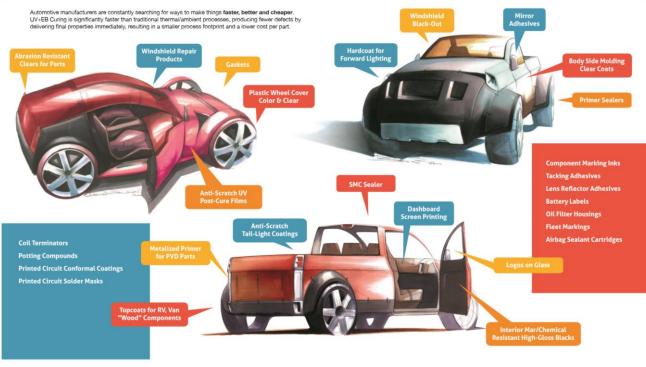
Advantages:

•Small Foot Print Paint Shops

•High Speed Curing reduced Paint Shop Cycle Time (10⁶ X free radical reaction versus convection oven)

•Facility Energy Savings - Low Pollution; Environmentally Friendly Coatings (GHG / CO2 emissions 50-90% savings)

PADTECH Ite ASSOCIATION FOR UV&EB TECHNOLOGY Automotive UV+EB Curing Alook at the technology and application

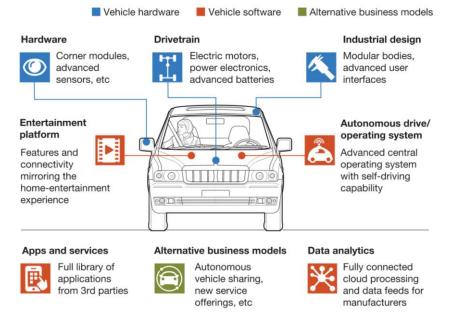


Fast Processing
 Tough, Scratch-Resistant Coatings
 Lower VOC
 Small Process Footprint
 Lower Cost

The Role of Ultraviolet and Electron Beam Cure

- Lightweight Substrates
- Vehicle Electrification/ Connectivity / Autonomous Vehicles – Electrical Systems
- Innovative Processes Liquid Spray Coatings, Powder Coatings, Coil Coatings, Decals, Printing
- Optimum Coating Properties – durability, scratch resistance, chip performance at low coating weights (Tough, Scratch Resistant)

Current Uses of UV+EB Cure Technology



Vehicle Design – MMLV Multi Material Lightweight Vehicle

- Future Strategies for Automotive Design & Assembly
- Cars become computers on wheels
- Horizontal versus Vertical Integration

Beiker,S., Hansson, F., Suneson, A., Uhl, M., "How the convergence of automotive and tech will create a new ecosystem", McKinsey & Company, Automotive & Assembly, Nov 2016 ³

In the future, cars will become computers on wheels as tech players move into the automotive sector to leverage their existing capabilities.

McKinsey&Company | Source: 35 expert interviews (across Asia, Europe, and United States)

Vehicle Design – MMLV Multi Material Lightweight Vehicle

A couple of specialized players will probably dominate each niche of the future automotive ecosystem.

Future scenario as a horizontal move for players

	Mechanical hardware	Subassemblies get standardized, and players merge to benefit from scaling up—ie, chassis components, body substructures shared across models/brands
土	Drivetrain	3–5 players with competitive advantage scale up production—ie, batteries for electric vehicles, fuel cells, drive units for modular cars
×,	Industrial designBranding	Vehicle interiors and exteriors remain a key differ- entiator, and importance of brand value rises in an increasingly commoditized sector
	Operating system	2–3 standard operating systems for autonomous drive (and potential other systems – eg, onboard communication architecture) as a plug-and-play solution
	In-car entertainment	2–3 large-scale multimedia ecosystems present attractive opportunity for 3rd-party development, probably established mobile platforms (iOS, Android)
st	 Cloud Data analytics 	Analytics skills and server technology are leveraged to create services that facilitate the usage of big data for commercialization and customer satisfaction
B	 Apps and services 	Built-in navigation and media get replaced by apps provided by 3rd-party developers, curated via app store and more widely connected via online services
	Alternative business models	Vehicle provided to consumer just for duration of ride and specific to trip purpose, making mobility the actual product, beyond vehicle

McKinsey&Company | Source: Expert interviews

 Mechanical hardware Subassemblies get standardized, and players merge to benefit from scaling up—ie, chassis components, body substructures shared across models/brands

Beiker,S., Hansson, F., Suneson, A., Uhl, M., "How the convergence of automotive and tech will create a new ecosystem", McKinsey & Company, Automotive & Assembly, Nov 2016 ³

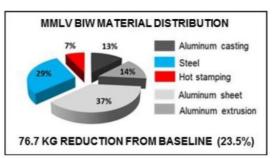
Vehicle Design – MMLV Multi Material Lightweight Vehicle

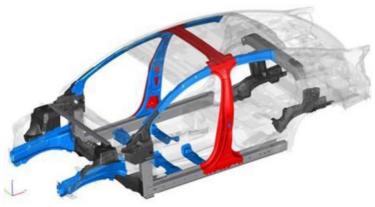
Fuel Economy improves 6-8% by reducing vehicle mass 10%

Lightweight Material	Mass Reduction	
Magnesium	30-70%	
Carbon fiber composites	50-70%	
Aluminum and Al matrix composites	30-60%	
Titanium	40-55%	
Glass fiber composites	25-35%	
Advanced high strength steel	15-25%	
High strength steel	10-28%	

EXAMPLE MEDIUM-SIZED CAR **Conventional lightweight** Moderate lightweight Extreme lightweight ← 100% Carbon fiber ← 100% ← 100% Aluminum 8 16 Magnesium 9 Plastics Carbon fiber 36 Steel 15 23 Aluminum Magnesium 3 Aluminum Plastics 20 15 Plastics HSS 48 Steel 8 Steel 8 HSS 14 HSS 23 Other Other 20 19 Other Replacement of steel with high-Usage of light metals and Extensive usage of carbon fiber strength steel sandwich structures materials for maximum weight savings 250 kg (18%) 420 kg (30%) 490 kg (35%) at ~ 31 EUR/kg saved at ~ 41 EUR/kg saved at ~ 8 - 10^{1,2} EUR/kg saved

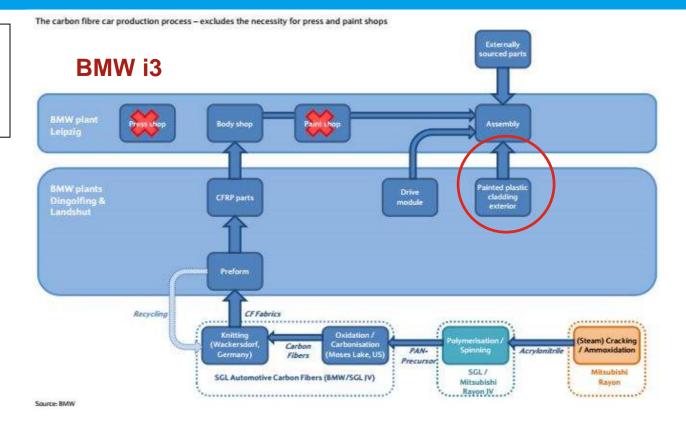
Lightweight packages apply different lightweight material mixes with


1 Numbers in 2030 2 Low range: aggressive scenario, high range: moderate scenario SOURCE: McKinsey


different weight and cost impact

Alternative Corrosion Methods

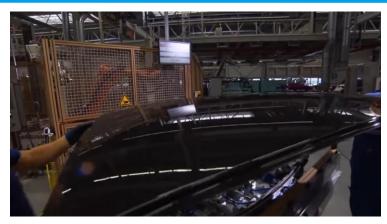
- Initiatives to Further Support *Lightweighting*
 - US Department of Energy/Ford /Magna International MMLV Project Ford Fusion vs. 2013 Baseline <u>23.5% weight</u> reduction. **34 mpg** vs. 28 mpg
 - Two Corrosion Strategies
 - Conventional Paint Shop Process
 - <u>Alternative Corrosion Strategy</u>


*Smith K., Zang Y. "MMLV: Corrosion Design and Testing", Magna International, SAE Technical Paper 2015-01-0410,2015

Light Weight Vehicle – Innovative Manufacturing Methods

Car production eliminates the need for stamping and paint shops

Paint Shop BMW i3 2016 – Exterior Class A Panels



2016 BMW i3 Production Final Assembly

SAE INTERNATIONAL

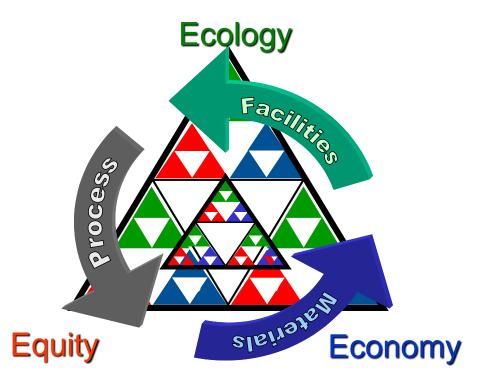
2016 BMW i3 – Finish Vehicle Class A Panels

https://www.youtube.com/watch?v=HGi-KmYGuZE BMW i3 Production Car TV

How can UV EB Impact the Future of Automotive Manufacturing

Automotive Design Features

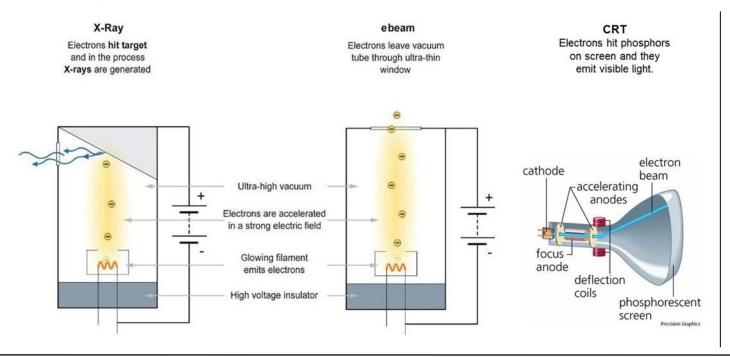
Lightweight Substrate


• Vehicle Design – Modular Body, Class A Panels

Advantages of UV EB Cure

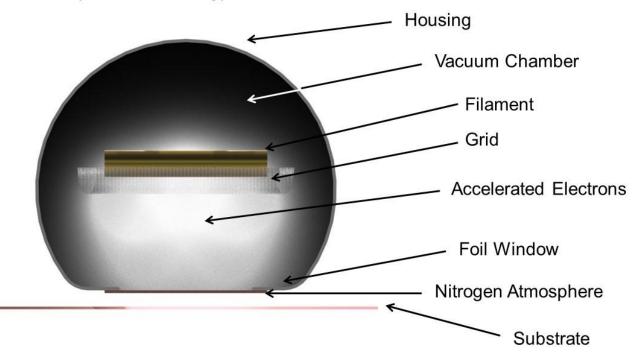
- 3D for direct line of sight cure
- Cycle Time/ Energy (GHG) Savings/ Foot Print Cost Savings
- Film Performance Advantages Appearance / Film Hardness
- Multiple Substrate Compatibility

Opportunities

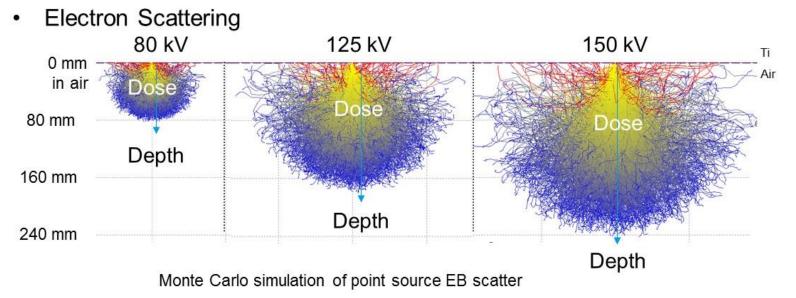

- Material Development
- Long Term Exterior Durability Studies

Ebeam Technology for Automotive Applications

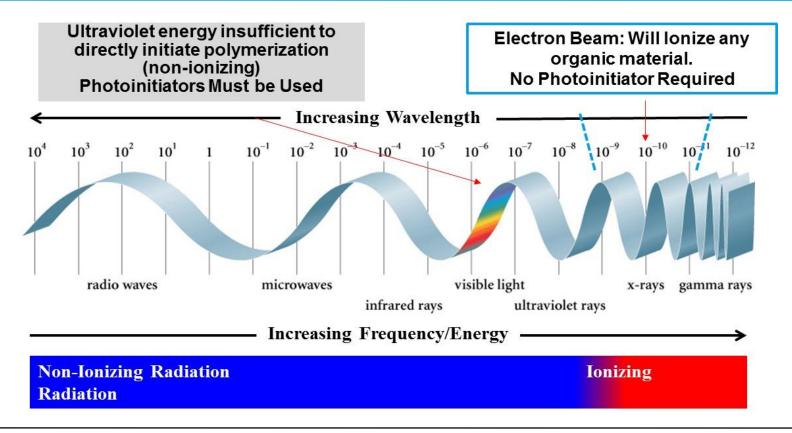
HOW EBEAM WORKS


X-Ray Tube, EBEAM Lamp and CRT

Ebeam Technology for Automotive Applications


HOW EBEAM WORKS

· The anatomy of a low energy electron beam



Ebeam Technology for Automotive Applications

HOW EBEAM WORKS

Ebeam for Automotive Manufacturing: UV vs. Ebeam Technology

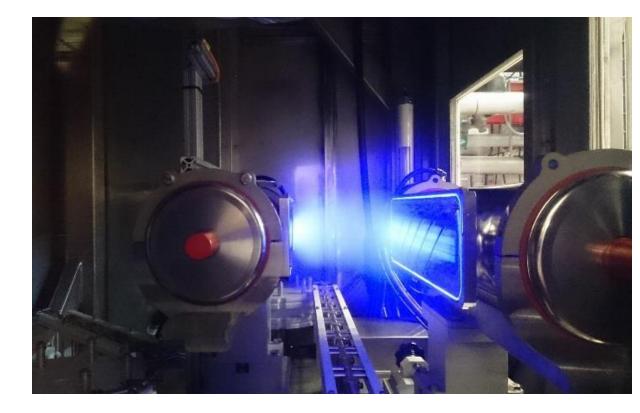
Ultraviolet	Electron Beam	
Photons	Accelerated Electrons	
Wavelength determines energy; typically 250-450 nanometers	Accelerating voltage determines energy; typically 80-180 kV	
Energy unit conversion; 350 nm Photon – 3.5eV	Typical electron energy at substrate; 70,000 eV	
Total applied energy typically 0.1 to 0.5 J/cm ²	Total applied energy typically 20 to 40 kilo gray (kGy) 1 kGy = 1 J/gm for 50 g/m ² layer = 0.1 to 0.2 J/cm ²	

Ultraviolet	Electron Beam
Optical Density of Material	Mass Density of Material
Peak Irradiance (power of focus) of UV Source	Controlled by Acceleration Potential (Voltage) of beam
Clearcoats, limited pigmented, opaque materials	Easily penetrates clearcoats, highly pigmented and opaque materials
Cures high film thickness with low pigment load. Lamination of <u>clear</u> materials	Cures high film thickness, heavily pigmented coatings. Enables lamination of opaque materials

Measure	Current Thermal Drying Line	200 kV EB Curing Line
Parts/kWh	28	415
Plant Floor Space (sq)	2400	1200
Yield (FTT - First Time Through)	60%	90%
Productivity (parts/hour)	1080	3240
VOC ₂ Emissions	0.98 lbs./gal	0.047 lbs. /gal

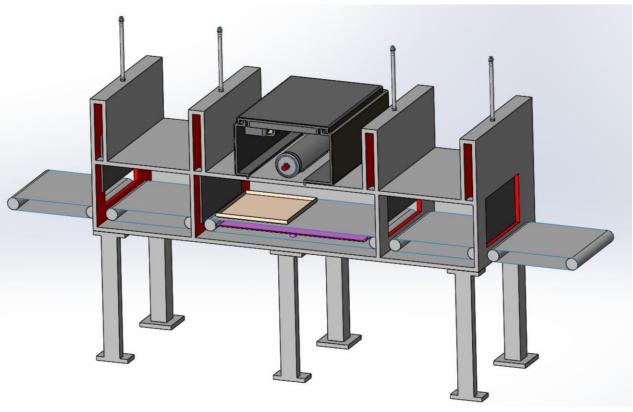
Source – 2011 Akzo Nobel Department of Energy Proposal Ref. 2

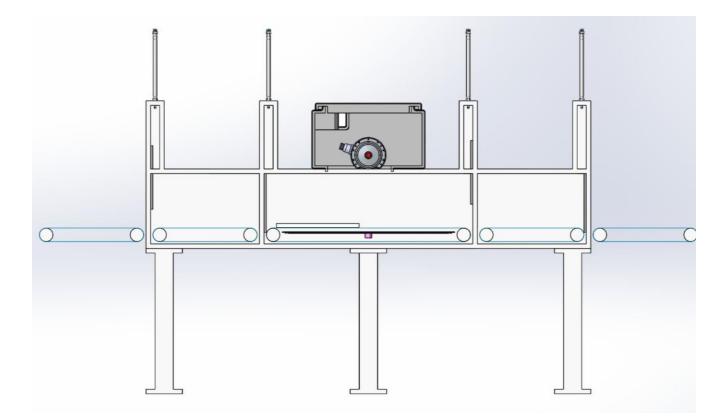
EB Cured Interior Automotive Part


Technology	% Solids	Energy (J/g)	Cure Time	Cure Temp
Waterborne	40%	3390	20-30 min.	80 C
Solventborne	40%	555	20-30 min.	80 C
EB Cure	100%	30	< 1 sec.	Room Temp.

Interior automotive ABS/PC plastic trim plate support structure coated with Akzo Nobel high-gloss black mono coat. Cured with COMET EBLab Unit. *Ref. 2*

- Energy to dry/cure one gram of dried coating
- Water-borne coating (at 40 percent solids), the energy required to dry and cure the coating (independent of other energy required to heat the substrate) is **3390J/g**.
- On the same basis, the equivalent energy required for a solvent-borne coating (40 percent solids in toluene) is **555J/g**.
- Compared to an electron beam-cured coating (100 percent solids, solventfree) using a dose of **30kGy (30J/g**).
- Converting Joules to kWh, the total kWh cost to dry 1 Mil (25.4 microns) of dry applied coating is almost twenty times higher for solvent-based versus electron beam-cured 100 percent solid formulations.


Advantages:


- Excellent high gloss/ matte appearance of dark pigmented/ high P/B
- Compared to UV cure, similar thermal shock, chemical and scratch resistance.

Automotive Plastic Part

- Flat Stock / Side Panels, down-fire process which uses a 200kV electronbeam.
- The parts enter an inner chamber where inerting and then irradiation would occur.
- 60 second process
- The inner chamber would be shielded and have a shifting table. Parts would exit fully cured.

Ebeam for Automotive Applications. Equipment Configurations

Coating Development & Automotive Test Methods

Opportunities

- Material Development Test Methods
- Long Term Exterior Durability Studies
- WOM SAE J2527 ASTM D7869
- Nano Scratch ASTM D7187
- Taber Abrasion ASTM D4060-10

Anton-Paar Nano-Scratch Tester

Q-SUN Xe-3 Xenon Test Chamber

"Innovating better paint isn't always about the wet stuff" – Automotive News"

Parting Words & Comments:

- Christopher Toomey, BASF senior vice president, coatings solutions North America envisions future innovations allowing paint to dry faster.
- "How do we reduce the temperatures in the ovens, or even go to ambient dry?" he asks.
- "That's the Holy Grail -- if you could take out an oven."
- Innovating in the paint business is sometimes as **much about the process** as the product.
- The segment's big players are spending R&D dollars to take time and cost out of the process of painting new vehicles.

UV EB Solutions that Drive GHG Saving and Small Foot-Print Automotive Paint Shop

References:

- 1. Carignano, A " Electron Beam Technology for Automotive Applications" SAE 2016 World Congress
- 2. Carignano, A "The Development of Low-Energy Electron Beam Technology for Automotive Interior Plastic Coating Application" UV EB Technology, RadTech International, 2017, Q1
- 3. Heuss, R., Muller, N, van Sintern, W, Starke, A, Tschiesner, A., McKinsey & Company, Advanced Industries, "Light Weight, Heavy Impact How carbon fiber and other lightweight materials will develop across industries and specifically in automotive", February 2012
- 4. Beiker, S., Hansson, F., Suneson, A., Uhl, M., "How the convergence of automotive and tech will create a new ecosystem". McKinsey & Company, Automotive & Assembly, November 2016
- 5. Smith K., Zang Y. "MMLV: Corrosion Design and Testing", Magna International, SAE Technical Paper 2015-01-0410,2015
- 6. Berejka, A. "Prospects and Challenges for the Industrial Use of Electron Beam Accelerators". Lecture presented at International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators in Applications of Electron Accelerators: Prospects and Challenges (SM/EB), Vienna, Austria. May 9, 2009
- 7. Wernle, B, "Innovating better paint isn't always about the wet stuff", Automotive News, April 18, 2016

