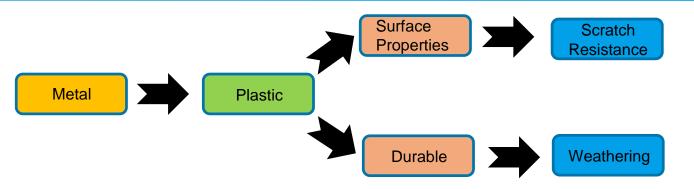

NEW NANO-SILICA POLYETHER UV CURABLE RESINS FOR AUTOMOTIVE APPLICATIONS

Ziniu Yu, Ph.D. BASF Corporation Southfield, MI

Conventional Cure (Waterborne, Solventborne)

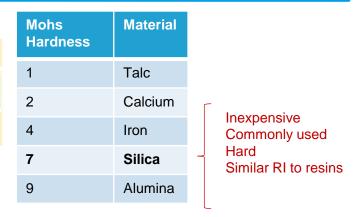

Advantages

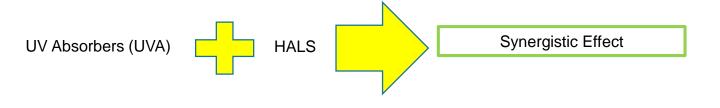
- □ 100% solid system → lowest VOC consumption
- Low energy consumption for curing process
- ❑ Very short curing time → enables direct handling of cured substrate (sanding, packaging, ...)
- Less space required than conventional coatings
- Best economical / ecological relation

UV Curing in Automotive Coating

Trend in Automotive Market

Scratches can be caused by.....


Coating failures can also be caused by


To Improve Scratch and Weather Resistance

Improve Scratch Resistance

Crosslinking	Shrinkage and Brittleness
Nanoparticles	Transparency, Large Surface Area
inorganic milers	rign viscosity, Loss of Transparency

Improve UV Durability

BASF Nano-Silica Product

Physical Properties	BASF Product	Competitor Product
Chemistry	Polyether acrylate containing 50% nano-silica	Aliphatic urethane acrylate nanocomposite
Viscosity (cps) @ 25 °C	1,500	9,500
Functionality	1.5	3

BASF Product

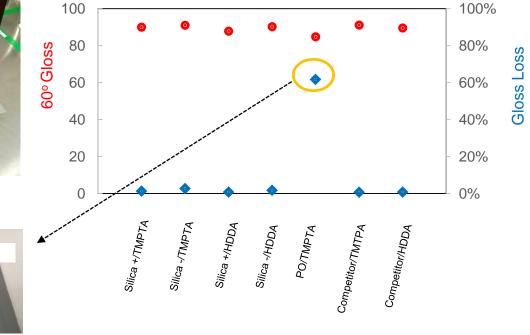
- **<u>Sprayable</u>** with incorporating small amount reactive diluents
- Use with **<u>other radiation-curable resins</u>** to formulate UV coatings

Formulations

	Experimental Formulations	Silica+/ TMPTA	Silica-/ TMPTA	Silica+/ HDDA	Silica-/ HDDA	PO/ TMPTA	Competitor/ TMPTA	Competitor/ HDDA
	BASF PO Acrylate Nano-Silica	46.9	31.3	46.9	31.3			
Oligomer	BASF Aliphatic Urethane Acrylate	15.6	31.3	15.6	31.3			
	BASF PO Acrylate					62.5		
	Competitor						62.5	62.5
Monomer	ТМРТА	30	30			30	30	
wonomen	HDDA			30	30			30

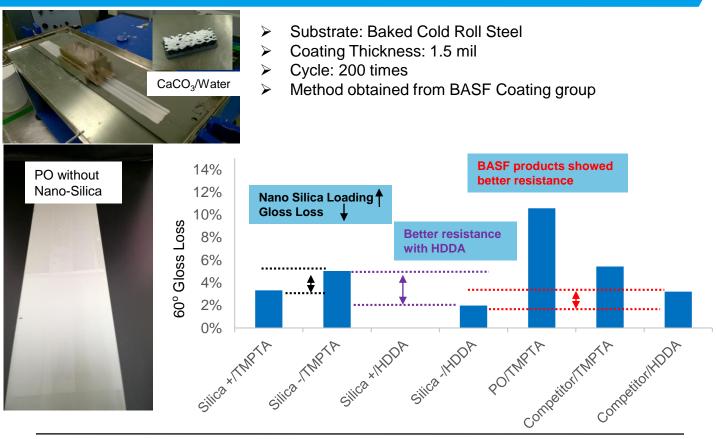
Additive Package Used in Formulations

UVA	2	
HALS	1	
Photoinitiator	4	
Leveling agent	0.5	

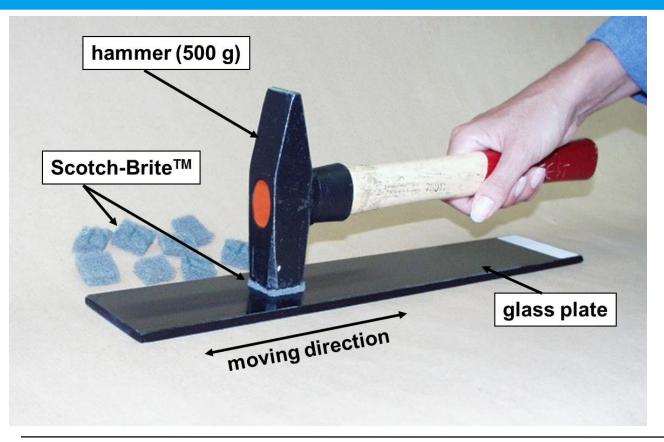

Weathering, scratch resistance, adhesion were evaluated Cured by 120 W/cm Gallium-Indium doped Hg lamp Substrate: Polycarbonate

Scratch Resistance

Dry Scratch Resistance

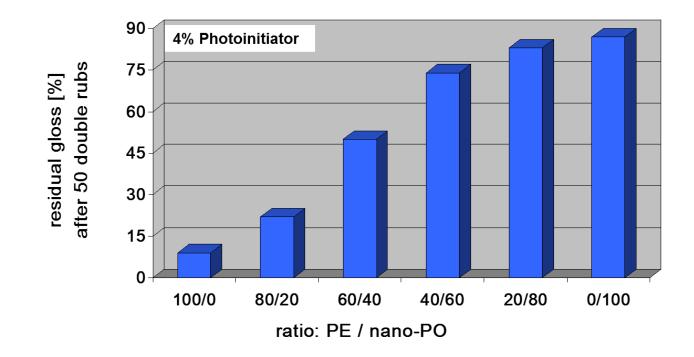


- Substrate: Polycarbonate
- Coating Thickness: 0.8 mil
- New Ford test method to evaluate micro-scratching resistance



SAE INTERNATIONAL

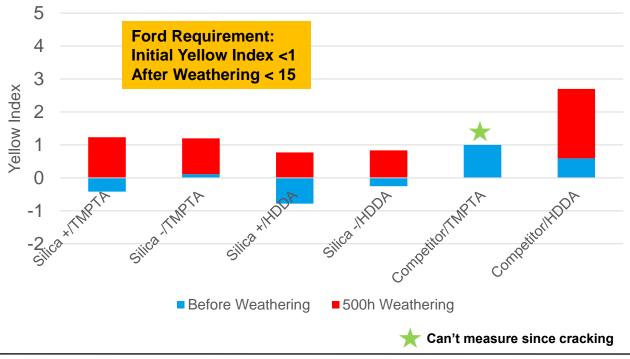
Wet Scratch Resistance (Erichsen Car Wash)

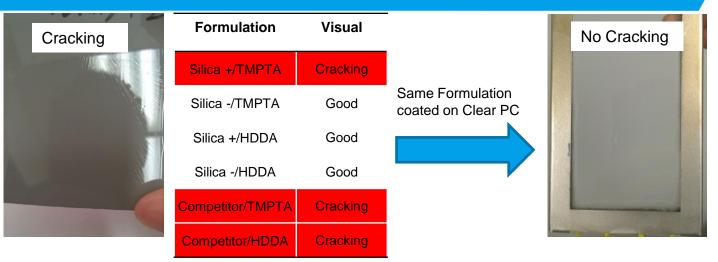


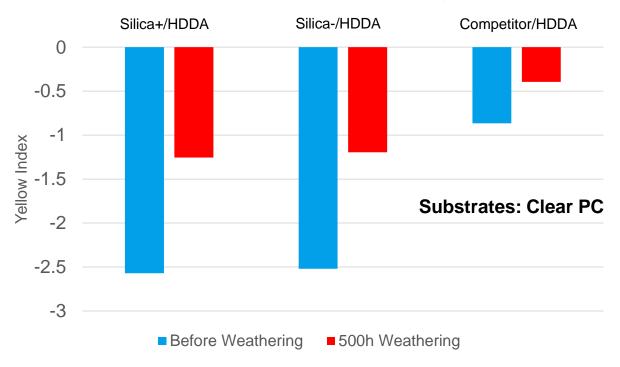
Scratch Resistance: Hammer Test

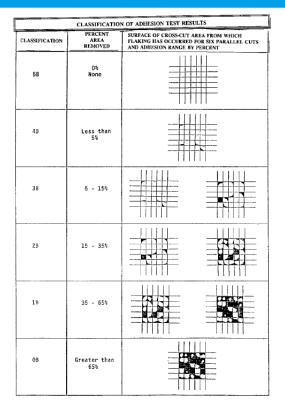
Influence of Nano Scaled Silica

Hammer (500g) / Scotch-Brite[™] Test




- Xenon Testing SAE J2527 (previously SAE J1960 or CAM 180)
- Substrates
 - 1. Polycarbonate (Grey) 2. Polycarbonate (Clear)
- Extended UV filters (Quartz/Boro) significant short wavelength UV exposure.
- Cycles 60 mins Dark + Spray → 40 mins light → 20 mins light + Spray → 1 hour light
- Followed Ford Weathering Specification for exterior coating.


Yellow Index defined by ASTM 1925


- Pigmented PC absorbed light and transferred to heat, which caused the cracking of higher crosslinking density coatings.
- □ Coating on Clear PC substrates didn't show any cracks.

- □ All coated Clear PC samples had Yellow index< 1.
- □ All samples are still under weathering.

Other Properties

Adhesion to Polycarbonate

- Substrate: Polycarbonate
- Coating thickness: 0.8 mil
- Ford Specification for exterior coating: <u>4B or above</u>

Formulation	Result			
Torridiation	Result			
Silica +/TMPTA	3B		Better a	
Silica -/TMPTA	5B	_	HDDA	
Silica +/HDDA	5B		Nano-s	
Silica -/HDDA	5B		affecte	
PO/TMPTA	5B		BASF p	
Competitor/TMPTA	0B		better a compe	
Competitor/HDDA	5B			

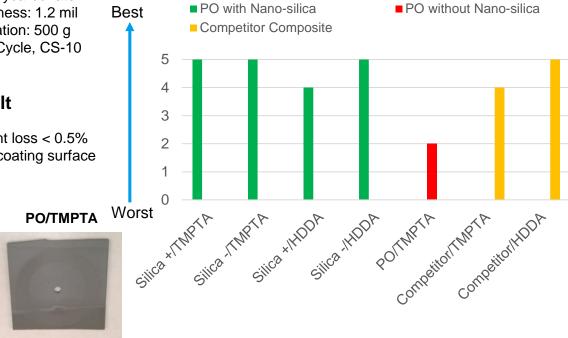
- Better adhesion with HDDA
- Nano-silica slightly affected the adhesion
- BASF products had better adhesion than competitor products

Adhesion Test ASTM D 3359 Method B

Taber Abrasion

Test Method

- Substrate: Polycarbonate
- Coating thickness: 1.2 mil
- Ford specification: 500 g loading, 300 Cycle, CS-10 abraser


Result

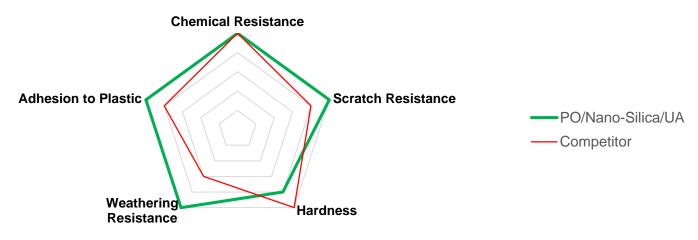
- □ Coating weight loss < 0.5%
- Evaluate the coating surface by mar

Silica +/HDDA

Visual Evaluation

Chemical Resistance

- Most of the sample showed good chemical resistance
- No Crackings, Gloss loss, Stain were observed


Test Fluids: Motor Oil, Tar Remover, Windshield Washer Fluid, Antifreeze based on Ford specification

Visual Evaluation Worst 1 ------ 5 Best

	Motor Oil	Tar Remover	Windshield Fluid	Antifreeze
Silica +/TMPTA	5	5	5	5
Silica -/TMPTA	5	5	5	5
Silica +/HDDA	5	5	5	5
Silica -/HDDA	5	5	5	5
PO/TMPTA	4	3	3	3
Competitor/TMPTA	5	5	5	5
Competitor/HDDA	5	5	5	5

Summary

- BASF Nano-sized silica products
 - Scratch resistance improved with incorporating small amount of Nano-Silica Resin
 - Low viscosity, good for spray application
- Formulation with HDDA had better adhesion, weathering resistance
- Formulation with TMPTA had better hardness
- A good fit for Automotive interior and exterior applications

We would like to thank

Dan Waldon, David Law and Sean Riley

BASF Corporation, 24710 W. Eleven Mile Road, Southfield, MI 48033

for sharing the test methods and test equipment.

While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, they are provided for guidance only. Because many factors may affect processing or application/use, BASF recommends that the reader make tests to determine the suitability of a product for a particular purpose prior to use. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESCRIPTIONS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. In no case shall the descriptions, information, data or designs provided be considered a part of BASF's terms and conditions of sale. Further, the descriptions, designs, data, and information furnished by BASF here under are given gratis and BASF assumes no obligation or liability for the descriptions, designs, data or information given or results obtained all such being given and accepted at the reader's risk.

© BASF Corporation, 2017

Thank you for your attention!

Questions?

Contact Info:

Ziniu Yu, Technical Specialist, Email: ziniu.yu@basf.com

Avinash Bhaskar, Market Segment Manager, Email: avinash.bhasar@basf.com