Sustainability Advantages of Ultraviolet and Electron Beam Curing

By Ronald Golden

onsumers and suppliers of consumer products are taking an increasingly active interest in environmental issues and "sustainable development." A number of RadTech members have been approached by their customers with requests to provide information on the contributions that their products can make to the sustainability initiative. In some cases, sustainability may be considered as a criterion in purchasing decisions.

Sustainability Advantages of Ultraviolet and Electron **Beam Curing**

Ultraviolet (UV) and electron beam (EB) curing offer several significant "sustainability" features compared to conventional thermal curing processes:

- Reduced use of solvents, lower VOC and HAPS.
- Reduced energy usage.
- Reduced fossil fuel usage.
- Lower greenhouse gas emissions.
- Reduced or eliminated "end-of-pipe" pollution controls.
- Reduced transportation requirements.
- UV and EB inks, coatings and adhesives do not dry out by evaporation...
 - That makes it easier to recover and recycle printing and coating materials.
 - That means they require less solvent to clean up.
- UV and EB printed/coated packaging materials are recyclable and repulpable.
- UV/EB curing materials have very low vapor pressures (reduced worker exposure).

These features have been confirmed by studies that consistently demonstrated that UV and EB curing enable reduced energy usage and greenhouse gas emissions, primarily because of their very high applied solids, and because UV or EB energy is used instead of heat for curing. Thermal curing must heat large volumes of air and/or generate radiant infrared energy to:

- Maintain the thermal curing oven at temperature;
- Evaporate and remove water and/or solvent;

TABLE 1

Pressure-sensitive adhesive application parameters

Technology					
	Units	UV-Cured acResin	Solvent	WB Dispersion	
Coating Weight	g/m²	20	20	20	
Coating Solids	%	99	47	55	
Line Speed	m/min	200	167	100	
Web Width	m/min	0.8	0.8	0.8	
Production Rate	m²/hr	9,600	8,016	4,800	
Annual Production Time	hr/yr	8,000	8,000	8,000	
Annual Production	m²/yr	76,800,000	64,128,000	38,400,000	

TABLE 2

Electrical energy consumption for web coating pressure-sensitive adhesive

Technology				
	Units	UV-Cured	Solvent	W/B
		acResin		Dispersion
Electricity Consumption				
Adhesive Preparation	kWh/m²	0.008	0.008	
Coating Application	kWh/m²	0.009	0.011	
Curing	kWh/m²	0.028	0.013	
Finishing	kWh/m²	0.006	0.001	
Solvent Incineration	kWh/m²	0	0.01	
Electricity Subtotal	kWh/m²	0.051	0.04	0.14
Annual Electricity Consumption	kWh	3,916,800	2,757,504	5,376,000
Average Cost of Electricity to Industrial Users ⁵	\$/kVVh	0.062	0.062	0.062
Annual Electricity Cost		242,842	170,965	333,312
Normalized Electricity Cost	\$/million m ²	3,162	2,666	8,680

- Stay below the lower explosive limit when solvents are present;
- Heat the substrate to the curing temperature; and
- Cure the ink and/or coating. Moreover, any volatile organic solvent emissions from thermal curing ovens require "end-of-pipe" controls (incineration or solvent capture). Both processes require additional energy input and generate corresponding greenhouse gases.

In contrast, with UV or EB curing processes, reactive monomers replace all or most of the diluting medium and become part of the cured polymer so little if any added volatile solvent or water is needed in the formulation, and effective applied solids can approach 100 percent. Curing is initiated by UV or EB

radiation and is almost instantaneous, the substrate remains cool, and air circulation is mainly for equipment and substrate cooling, and evacuation of any volatiles.

Previous analyses comparing UV/EB processes to competitive solvent and waterborne technologies have also shown substantial reductions in pollution and hazardous waste associated with spent solvent-borne materials and cleanup, as well as significant improvements in product performance and productivity, often at an overall lower net cost.1

RadTech Sustainability **Task Force**

RadTech International North America has formed a Sustainability Task Force—comprising a group of raw material suppliers; ink, coatings and adhesives formulators; equipment manufacturers; end-use converters; and packaging manufacturers—to study and quantify these sustainability characteristics. Specifically, the RadTech Sustainability Task Force has established the following goals:

- Develop comprehensive life cycle analyses for all applicable technology options.
- Develop quantitative comparisons of energy, emissions and resource use of UV/EB processes versus conventional thermal curing alternatives.
- Develop a model to help decisionmakers to quantify sustainability factors when evaluating technology options.

Pressure-Sensitive Adhesive **Case Study**

The most complete published quantitative analysis comparing ultraviolet and waterborne technologies was a 1997 study of the conversion to UV curing from thermal curing of waterborne inks and coatings for exterior aluminum can decoration and coating at Coors Brewing Company.2 A previous RadTech Report article³ reported how the conversion resulted in a reduction of up to 80 percent in total energy usage in Btu, including electrical power and natural gas. Greenhouse gas emissions showed a corresponding reduction of up to 67 percent. Moreover, these benefits were achieved at a lower net cost for the finished product.

The RadTech Sustainability Task Force was seeking a more recent study to develop a similar comparison using current energy and emissions factors. BASF Corporation generously provided RadTech with the raw data from their ecoefficiency evaluation of waterborne, solvent and UV web-applied pressure sensitive adhesives4 as the

TABLE 3

Natural gas consumption for web coating pressure-sensitive adhesive

Technology				
	Units	UV-Cured acResin	Solvent	W/B Dispersion
Natural Gas Subtotal	1000 ft3/m ²	0	0.0033	0.003
Curing	1000 ft ³ /yr	0	147,494	115,200
Solvent Incineration	1000 ft ³ /yr	0	64,128	0
Annual Natural Gas Demand	1000 ft ³	0	211,622	115,200
Normalized Natural Gas	1000 ft ³ / million m ²			
Consumption		0	3,300	3,000
Natural Gas Price to Industrial Users ⁶	\$/1000 ft ³	N/A	8.00	8.00
Annual Natural Gas Cost		0	1,693,000	922,000

basis for the following quantitative analysis. Table 1 shows the application parameters. Tables 2, 3 and 4 show a comparison of the energy demand components for each coating technology.

The higher solids of the UV coating also means reduced energy required to transport the coating from the formulator to the application site. Table 4 shows the transportation energy required to deliver enough of each type of coating to cover 76,800,000 square meters at an applied coat weight of 20 g/m².

Table 5 shows a comparison of the total energy requirements of each of the three technologies, normalized to Btu/square meter of coated surface. Conversion of electrical energy MWh to Btu is based on an average heat rate of 9.713 million Btu/MWh; conversion of natural gas usage to Btu is based on 1,031 Btu per cubic foot.

On a normalized basis (Btu per square meter of coated substrate) the UV-cured resin requires up to 89 percent less energy, compared to solvent and waterborne systems.

Greenhouse Gas Emissions

Both generation of electrical energy and combustion of natural gas generate corresponding greenhouse gas emissions (Table 6).

Factors for conversion of electrical MWh and combustion of various fuels to greenhouse gas emissions are based on data published by the U.S. Energy Information Administration and the U.S. Environmental Protection Agency (EPA).9 On a normalized basis (MT CO2 per million square meters of coated substrate), the UV-cured resin generates up to 87 percent less carbon dioxide, compared to thermal curing solvent and waterborne systems.

UV-Cured Products Are Recyclable

Trials at Beloit Corporation confirmed that UV/EB inks and coatings repulp easily.¹⁰ Mill scale trials show that UV/EB-coated waste can be incorporated into standard furnish with no detrimental effects on product quality. The study concluded that UV- and EB-printed and coated

TABLE 4

Transportation energy requirements on an equal coverage basis

Technology				
	Units	UV-Cured acResin	Solvent	W/B Dispersion
Normalized Annual Coating				
Solids	MT	1,538	1,538	1,538
Liquid Annual Coating				
Volume	MT	1,553	3,272	2,796
Net Truckload	MT	20	20	20
Truckloads/Year		76	160	137
Diesel Fuel Usage*	gal/yr	6,781	14,365	12,275
Energy Consumption**	Million Btu/yr	943	1,997	1,706

^{*}Based on an average 500-mile delivery trip and fuel mileage of 5.7 mpg⁷

^{**}Based on 139,000 Btu per gallon of diesel fuel8

TABLE 5

Overall energy requirements on an equal coverage basis

Technology					
	Units	UV-Cured acResin	Solvent	W/B Dispersion	
Electricity Consumption	MWh/yr	3,917	2,758	5,376	
Natural Gas-Curing	kft³/yr	0	147,494	115,200	
Natural Gas-VOC Incineration	kft³/yr	0	64,128		
Transportation	Million Btu/yr	943	1,997	1,706	
Total Energy Demand	Million Btu/yr	38,986	246,963	172,695	
Normalized Total Annual Energy Demand	Btu/m²/yr	508	3,851	4,497	

paper can be recycled into tissue and/ or fine paper grades using commercially available equipment.

Moreover, the high gloss and abrasion resistance of UV- and EB-cured coatings in some cases, can enable replacement of laminated structures with printed inks and coatings. Laminated paper and plastics are difficult to recycle due to problems with separating two incompatible types of materials. UV/EB printed inks and coatings break down under recycling process conditions, permitting effective recycling of both paper and plastic structures that formerly were intractable in laminated form.

Summary

In summary, UV and EB curing have numerous "sustainability" characteristics:

Substantial reductions in energy demand.

- Substantial reductions in fossil fuel usage.
- Substantial reductions in greenhouse gas emissions.

- Reduced transportation costs and emissions.
- Safer workplace.
- Recyclable inks, coatings and product wastes.
- Positive performance advantages and economic returns.

Where Do We Go From Here?

The RadTech Sustainability Task Force has already developed "cradleto-grave-to-cradle" life cycle analyses for the various coating and printing technologies, including energy usage, carbon footprint, transportation, emissions controls, waste, recyclability and more at each stage of production of raw materials and finished products, as well as the end use of the products and their disposal and recycling. Current plans include working with industry, academic and government partners on demonstration projects to develop additional data and practical insights. The resulting data will be used to develop additional quantitative analyses, as well as a working model for technology comparison, including economic factors.

TABLE 6

Greenhouse gas (CO2) emissions

Technology					
	Units	UV-Cured acResin	Solvent	W/B Dispersion	
Transportation	MT/yr	70	146	125	
Electricity Consumption	MT/yr	2,389	1,682	3,279	
Natural Gas	MT/yr	-	11,600	6,315	
Total	MT/yr	2,459	13,429	9,719	
Normalized Greenhouse Emissions	MT CO ₂ / million m ²	32	209	253	

References

- 1. (a) Electric Power Research Institute (EPRI), UV Curable Coatings for Wood Meet Manufacturer's Challenges, Report TA-112685 (1999); www.epri.com; (b) Commonwealth of Massachusetts Executive Office of Environmental Affairs, Office of Technical Assistance, New Coatings Technologies Provide Big Payoffs For Kidde-Fenwall, Inc., Toxics Use Reduction Case Study No. 43, (1996); www.magnet.state.ma.us/ota; (c) Northeast Waste Management Official's Association (NEWMOA). Northeast States for Coordinated Air Use Management (NESCAUM), Wood Furniture Finishing, Ultraviolet Radiation Cured Coatings and Aqueous-Based Coatings, Hussey Seating Company of North Berwick, Maine, Pollution Prevention Case Study (1997); www.newmoa.com; (d) Wood Furniture Coatings Case Study, Artistic Finishes, Inc., Roseville, MN, The Minnesota Technical Assistance Program, www.mntap.umn.edu/paint/ Case %20Studies %20article %202.doc
- 2. Robert Brady et al., Evaluation of UV-Curable Coatings for Aluminum Can Production, National Industrial Competitiveness through Efficiency, Environment and economics (NICE3) Project #DE-FG48-93R810499, June 9, 1997
- 3. Ronald Golden, "Low-Emission Technologies: A Path to Greener Industry," RadTech Report, May/June 2005, p 14
- 4. "Measuring Success," Dr. B. Jesse E. Reich et al., Adhesives & Sealants Industry Magazine, November, 2006
- 5. US Energy Information Administration, Electric Power Annual 2006
- 6. US Energy Information Administration (http://tonto.eia.doe.gov/dnav/ng/ ng_pri_sum_dcu_nus_m.htm)
- 7. US Energy Information Administration Annual Energy Outlook 2007 Table D3. Key Results for Transportation Sector Technology Cases; Supplemental Tables to the Annual Energy Outlook 2007, Table 57. Freight Transportation Energy Use http:// www.eia.doe.gov/oiaf/aeo/supplement/pdf/suptab_57.pdf

- 8. US Energy Information Administration
- 9. (a) US Energy Information Administration Energy Emission Coefficients www.eia.doe.gov/oiaf/1605/ factors.html; Energy Information Administration/Electric Power Annual 2006 www.eia.doe.gov/cneaf/ electricity/epa/epa_sum.html; (c) USA EPA 2008 Inventory of U.S. Greenhouse Gas Emissions and Sinks http:// www.epa.gov/climatechange/ emissions/usinventoryreport.html
- 10. David J. Korn, "Recyclability of UV and EB Printed and Coated Paper," RadTech Report, May/June 2005, p. 47

-Ronald Golden, Ph.D., offers consulting services through FocalPoint Consulting, Marietta, Ga.

