Using A New Approach To Analyze A Depth Profile Of Double Bond Conversion In Model Formulations And Commercial Formulation

R. Bao and S. Jönsson

Fusion UV Systems Inc., Gaithersburg, MD, USA

ABSTRACT OF PAPER

A new approach of analyzing the depth profile of double bond conversion as a function of film depth has been discussed. By using a combination of statistical calculation and traditional FTIR, a new approach to analyze the depth profile of conversion "layer by layer" in the characterization of photopolymerization was explored. Utilizing a formula $(X_1 + X_2 + \dots + X_n) / n = Average conv. n = 1,2,3... n: a number of layer (5µm), an average conversion of any 5µm depth could be calculated from prior 5µm conversion and total average conversion. More detail information of photopolymerization, such as the depth profile of conversion and a difference in conversion between the top 5 microns and the bottom 5µm in a 25µm film as a function of film depth was obtained. This investigation was accomplished using a variation of film depth, non-photo bleaching PhI (Irg. 184) as well as the concentration of PhIs in the presence of air and in absence of air. A commercial formulation also was analyzed using this new approach (statistical calculation / FTIR) were compared.$

1. INTRODUCTION

In the UV curing processes, it is well known that double bond conversion at different depths of a film is not uniform because there are an oxygen inhibition in outermost part of a cured film and an inner filter effect in a bottom part of a cured film. Surface tackiness and a wet approach at an interface between coatings and substrates are a big challenge for the current UV curing industry. To study a depth profile of double bond conversion in a UV cured film enables formulators to further understand the photochemistry of UV curing and to improve cured film properties. Analyzing double bond conversion is a key technology for a performance characterization of photopolymerization and for quality control of the UV curing processes. FTIR, RTIR and Photo-DSC are very important methods for monitoring the UV curing processes. However, all of these methods can only analyze a total average double bond conversion throughout the entire film. There are only a few papers aiming to study the depth profile of double bond conversion as a function of film depth using different analytical instruments (1). In 2002, Tom Scherzer reported a depth profiling as a function of degree of cure during the photopolymerization of acrylates studied by realtime FTIR-ATR spectroscopy (2). A conversion was analyzed only in a narrow layer $(1-2\mu m)$ at the bottom of the coatings, which does not give the total profile of conversion across the cured films. In 1997, a depth profiling of radiation curable coatings was investigated by W. Schrof (3) using a confocal Raman spectroscopy. Recently, Julie L.P. Jessop studied a conversion distribution along different depths of a cured film using a confocal Raman spectroscopy (4). A conversion of 2µm depth film in a cured film can be studied by using confocal Raman technology. In our previous

papers (5,6,7), a double or single laminated model was used to study the inner filter effect on absorbed UV light intensity (I_a) and oxygen inhibition at the surface of cured films. Using the double or single laminated model, a film needs to be separated physically to different layers by using PP films. In 2006, we first reported a new approach of using a combination of statistical calculation and traditional FTIR to analyze a double bond conversion layer by layer, using a photo-bleaching Irg. 819 as a PhI (8). This study focuses on using a new approach to analyze a depth profile of double bond conversion of model formulations using a non-photo bleaching Irg. 184 as a PhI and a commercial formulation.

2. EXPERIMENTALS

2.1. Materials

<u>Acrylates:</u> EB 8402 is a difunctional acrylated aliphatic urethane from UCB, $M_w \approx 1,000$. SR506 is isobornylacrylate from Sartomer.

Commercial formulations 1(CF1): Recommended coating thickness is 2-10µm for OPV (Over Printing Vanish) application for plastics.

Photoinitiators: Irgacure 184 from CIBA.

Irradiators: A Fusion LH6H lamp was used throughout the entire evaluation.

2.2.Photopolymerization conditions

A clear coating formulation, based on EB8402 / SR506 (3:7) with Irg. 184, was used as model formulation in presence of air. The formulation was coated on a substrate, such as PP-films. The film thickness applied throughout this investigation was $5\mu m$, $10\mu m$, $15\mu m$, $20\mu m$ and $25\mu m$, respectively. A series of drawdown bar was used to control the film thickness.

2.3. Analysis

FTIR analysis was carried out using a Spectrum 2000 spectrometer from Perkin - Elmer.

3. RESULTS AND DISCUSSION FOR MODLE FORMULATIONS

3.1.A depth profile of conversion as a function of film depth and [Irg.184]:

For a formulation using photo bleaching Irg. 819 as a PhI in absence of air, its depth profile of the double bond conversion is virtually unchanged and in presence of air, its depth profile of the C=C conversion is increased from the outermost to the bottom of a cured film (8). Its peak of the conversion (highest conversion) is in the bottom of a cured film in presence of air. It is very interesting to study a distribution of a depth profile of conversion along with various depths of a cured film using non-photo bleaching Irg. 184 as PhI in a formulation.

In order to study the oxygen diffusion and the inner filter effect, a comparison test between laminated films (no oxygen inhibition) and un-laminated films (in air) was performed. One piece of PP film was placed in front of "cured film" for the air curing system in order to run a fair comparison test. The distance between the PP film and coating is about 1 cm, so the front side of coating is still under influence of oxygen inhibition. The film thickness was varied by 5µm increments. The formulation is EB8402 / SR506 (3:7) with Irg. 1840.4%. From Fig. 1, one can see that the C=C conversion in a laminated film (in absence of oxygen) as a function of film thickness is decreased when the relative thick films (15-25µm) are cured because of the inner filter effect of Irg. 184. For a formulation using non-photo bleaching Irg. 184 as a PhI in absence of air, the conversion of thin film is higher than that of thick film due to the inner filter effect. The inner filter effect cannot be observed in the thin film (5-15µm). Each curve in Fig. 1 represents five different average double bond conversions for five different thickness films.

By curing in presence of air, the average double bond conversion can be increased from 10% for a thin film ($5\mu m$) to 30% for a thick film ($25\mu m$). Even for a total $25\mu m$ film, an real oxygen inhibition at the outermost layer of the film has not been reduced by increasing film thickness. A major contribution of increasing average double bond conversion results from the underlying layers beyond the oxygen diffusion affected region. Due to a balance of reducing the oxygen inhibition and increasing the inner filter effect from 20 μm to 25 μm film, the total average of the conversion is not changed for these two films.

By using the new approach to analyze the depth profile of conversion by each 5μ m for a 25μ m film, some interesting results can be demonstrated. When the film is 5μ m, the conversion in presence of air is 9.67%. X₁ = 9.67%. Subsequently, it was supposed that the double bond conversion (X₁ = 9.67%) of this 5μ m film is equal to the conversion of a top 5μ m film of 10 μ m thickness film (2 X 5μ m). By utilizing the formula (X₁ + X₂) / 2 = Average conversion (19.68%), the conversion (X₂) of the bottom 5μ m film can be calculated. X₂ = 29.69%. By using the formula (X₁ + X₂ +.....X_n) / n = Average conv. n = 1, 2,3...n is a number of layer (5μ m), the average conversion of any 5μ m section can be calculated from prior and total average conversion. Following table 1 is a calculation result of each 5μ m thickness for a 25 μ m film in the presence of air.

Film Thickness	Ave. Conv.	Top 5	Second 5	Third 5	Forth 5	Fifth 5
5µm	9.68%	9.6%				
10µm	19.68%	9.68%	29.68%			
15µm	27.83%	9.68%	29.68%	44.13%		
20µm	30.97%	9.68%	29.68%	44.13%	40.39%	
25µm	30.56%	9.68%	29.68%	44.13%	40.3%	28.93%

Table 1. Depth profile of double bond conversion as a function of film depth in presence of air at 67 mpm

Table 2. Depth profile of double bond conversion as a function of film depth in absence of air at 67 mpm

Film Thickness	Ave. Conv.	Top 5	Second 5	Third 5	Forth 5	Fifth 5
5µm	80.40%	80.40%				
10µm	80.58%	80.40%	80.76%			
15µm	79.95%	80.40%	80.76%	78.69%		
20µm	76.35%	80.40%	80.76%	78.69%	65.55%	
25µm	72.49%	80.40%	80.76%	78.69%	65.55%	57.05%

In table 2, the calculation result of each 5μ m thickness for a 25μ m film in absence of air is calculated. In Fig. 2 is plotted the depth profile of C=C conversion of a 25μ m film in absence and presence of air form Table 1 and Table 2. For a formulation using non-photo bleaching Irg. 184 as a PhI in the absence of air, the conversion of the top 5μ m is higher than that of the bottom 5μ m (80.40% vs 57.05%) in a 25μ m film. Apparently, there is a turning point (at 15 μ m depth) of the conversion in this depth profile curve of conversion in a 25μ m film cured in the absence of air, which means that the film depth from 15 to 25μ m are under an influence of the inner filter effect.

For the film in presence of air, photopolymerization from 5 to 15μ m is under strong influence of oxygen inhibition. Deeper than 15μ m depth, a clear inner filter effect from the film is observed. For a formulation using non-photo bleaching Irg. 184 as a PhI in presence of air, there is a peak conversion (highest conversion) at 15μ m depth (third 5μ m in table 2) in the depth profile curve of conversion due to the least oxygen inhibition and least filter effect (44.13% vs 9.68% and 28.93%) in this depth. For this film depth (15 μ m), there is the least oxygen inhibition and filter effect than rest depths of the 25 μ m cured film.

3.2. A depth profile of conversion as a function of film depth and curing speed:

In Fig. 3 is shown the double bond conversion as a function of curing speed (exposure time) and film thickness. Reducing curing speed from 67 m/min to 33 m/min, there is no change of the C=C conversion of a thin film (5 μ m) due to the oxygen inhibition. A benefit of increasing the conversion (30% vs 54%) of a thick film (25 μ m) has been observed. Increasing UV dose (mJ /cm²) cannot reduce the oxygen inhibition at the thin film (5 μ m), however it improves the conversion of the underlying layers without or with much less the oxygen inhibition.

By using a combination of statistic calculation and FTIR result from Fig. 3, Fig. 4 is plotted as a depth profile of C=C conversion as a function of curing speed and film depth. It is very noticeable that the peak conversion (highest conversion) has been shifted from 15 μ m depth to 20 μ m depth for the same formulation, by decreasing a curing speed from 67 mpm to 33 mpm. By analyzing an average conversion using a traditional FTIR method, 24% increasing conversion for a 25 μ m film (from 30% to 54%) in Fig. 3 can be shown. By using this new approach to analyze the conversion "layer by layer", 39% increasing conversion of bottom 5 μ m is shown (from 29% to 68%) for this 25 μ m film as expressed in Fig. 4.

3.3. A depth profile of conversion as a function of film depth and [PhI]:

PhIs are an important linkage between UV light and UV curable oligomers as well as monomers. The [PhI] level frequently need to be adjusted in order to improve physical properties of cured films. So, it is important to look into an effect of [PhI] on double bond conversion at different depths of cured films in order to fully understand photopolymerization. In Fig. 5 is shown that the influence of [Irg. 184] and film thickness on average double bond conversion. By increasing [Irg.184], an increase in average double bond conversion for a thin film (5 μ m) and thick film (25 μ m) can be detected. A flat conversion platform is reached when a film thickness is increased from 20 μ m to 25 μ m due to a balance of reducing the oxygen inhibition and increasing the filter effect. With the new approach, one can study distribution of a double bond conversion as a function of each 5 μ m individually. In Fig. 6 is displayed that increasing [Irg. 184] from 0.4% to 4%, both top 5 μ m conversion) is still in the middle depth (third 5 μ m) of 25 μ m cured film because there is the least oxygen inhibition and inner filter effect in this depth of a cured film. For each conversion curve of a 25 μ m film from these clear formulations, depth of the film lower than 15 μ m is mainly under an

influence of the oxygen inhibition; depth of the film higher than $15\mu m$ is mainly under an influence of the inner filter effect.

3.4. A depth profile of conversion as a function of film depth and I_0 (mW/cm²):

An average C=C conversion as a function of UV light intensity (I₀) and film thickness is displayed in Fig. 7. In this study, the same UV spectral distribution (LH6H) but four different power settings (I₀) and an equal UV dose (mJ/cm²) were used. Increasing film thickness can increase the conversion of a thicker film than 5 μ m. The average double bond conversion of a thin film (5 μ m) and thick film (25 μ m) is increased, simply by increasing I₀ (mW/cm²) from 416 mW/cm² to 2315 mW/cm².

In Fig. 8 is shown the depth profile of the double bond conversion as a function of I_0 and film depth from the "new approach". In Fig. 8, each curve represents a distribution of the C=C conversion of each 5µm depth in a total 25µm film with an equal UVA Dose (mJ/cm²). From the data in Fig. 8, the following clear informative remarks can be concluded for this formulation:

- i. A benefit of a high $I_0 (mW/cm^2)$ / short exposure time is at the outermost part (top 5 microns) of a cured film. Surface curing (top 5µm) is mainly improved from 20% to 46% when I_0 is increased from 416 mW/cm² to 2315 mW/cm². Once again, an influence of $I_0 (mW/cm^2)$ on reducing oxygen inhibition can be clearly demonstrated.
- ii. For the conversion curve using a high UV intensity / short exposure time, there is a peak conversion in the middle ($15\mu m$ depth) of the cured film.
- iii. For the conversion curve using a low UV I_0 / long exposure time, there is a peak conversion in or near bottom 5 micron depth of the 25µm cured film.
- iv. For this clear formulation, there is no change of the conversion from forth 5 microns to fifth 5μm (bottom 5μm) for the 25μm film.

4. RESULTS AND DISCUSSION FOR COMMERCIAL FORMULATION

A commercial formulation from a formulator was analyzed using the new approach. Concentration of [PhI] and what PhI are used in this formulation is unknown. However, the depth profile of C=C conversion from this "off-the-shelf" commercially available formulation is very similar to that from known module formulations discussed above, in which a benefit of a high UV intensity lamp in reducing the oxygen inhibition was shown, even if with equal UV Dose. The depth profile of the conversion for this commercial formulation has been studied.

4.1. Depth profile of conversion of CF1 as a function of film depth and $I_0(mW/cm^2)$:

CF1 was cured using the same UV spectral distribution (LH6H) but four different power settings (UV light intensity) and an equal UV dose with four different curing speeds. An effect of a film thickness and I_0 (mW / cm²) on total average double bond conversion is outlined in Fig. 9. The film thickness was varied by 5µm increment. In Fig. 9 is shown five different group tests for five different thickness films. By increasing the film thickness, one can find an increase in the average conversion, which results from a major contribution from the deeper part of the cured films, but not the top 5µm exposed to air directly. Overall, the high double bond conversion from different films can be obtained by using a high I_0 (mW / cm²) lamp. The C=C conversion of the thin film (5µm) can be increased faster than that of the thicker film (25µm), by increasing the I_0 (mW / cm²) from 216 mW / cm² to 2315 mW / cm², due to reducing the oxygen inhibition.

All results in Fig. 9 are the total average conversion of different films. By using the new approach (a combination of traditional FTIR and statistical calculation) to analyze the depth profile of conversion by each $5\mu m$, some interesting results can be demonstrated.

When the film is $5\mu m$, the conversion from a low UV intensity condition (416 mW / cm²) is 62.36%. By using a formula such as: $(X_1 + X_2 + \dots + X_n) / n = Average conv.$, the conversion of each $5\mu m$ section can be calculated from prior and average conversion for a one film. Table 3 is a statistical calculation result of each $5\mu m$ thickness for a $25\mu m$ film.

Film Thickness	Ave. Conv.	Top 5 micron	Second 5 micron	Third 5 micron	Forth 5 micron	Fifth 5 micron
5µm	62.36%	62.36%				
10µm	74.37%	62.36%	86.38%			
15µm	81.87%	62.36%	86.38%	96.87%		
20µm	85.13%	62.36%	86.38%	96.87%	94.91	
25µm	86.65%	62.36%	86.36%	96.87%	94.91	92.87

Table 3.Depth profile of conversion of CF1 as a function of film depth using equal UV Dose (mJ /cm²)

From table 3 and similar data, as expressed in Fig. 10 can be plotted a depth profile of double bond conversion as function of a film depth and I_0 (mW / cm²) for a 25µm film of CF1.

A gradient of conversion curve in Fig. 10 is sharper than the corresponding one shown in Fig. 9. This is due to the fact that because the Fig. 10 really reflects the changing of the conversion depth profile as a function of film depth in the 25 μ m film. The sharp conversion curve also proves that the oxygen inhibition can be minimized in a deeper part of a film. The conversion of the top 5 μ m is cured faster than that of the bottom 5 μ m when the UV intensity is increased. The conversion at 15 μ m depth (third 5 μ m) is highest (peak conversion) in 5 different depths of the cured film, which means that there is a minimum of oxygen inhibition and filter effect in this depth of the cured film. A more uniformed cured film can be achieved by using a combination of a high I₀ (mW / cm²) lamp and short exposure time.

With this "new" approach, it is possible to show much more influence of using a High $I_0 (mW / cm^2)$ lamp /short exposure time on reducing the oxygen inhibition, compared with using a Low $I_0 (mW / cm^2)$ lamp / long exposure time. A difference of analytical results between the traditional FTIR and the new approach is summarized bellow:

	High I ₀ / t exposure short	Low I ₀ / t exposure long	Difference
Average conv.	90.27%	86.65%	3.62%
Bottom 5 conv.	92%	92%	0%
Top 5 conv.	76.79%	62.36%	14%
Ratio of conversion (top / bottom)	0.84	0.68	0.16

Conversion difference between FTIR and FTIR / Statistical calculation for a 25µm film of CF1 in air

By using the new approach, more detailed information of conversion can be obtained!

Using the traditional FTIR, under a high $I_0 (mW / cm^2)$ / short exposure time condition, an average conversion for a 25µm film is 90.27% while under a Low UV Intensity / longer exposure time condition, an average conversion is 86.65%. The difference of the average conversion between these two different setting up is 3.62%.

Using this new approach with the identical formulation, under a high $I_0 (mW / cm^2) / short exposure time, a 76.79\% conversion for the top 5µm in the 25µm film can be obtained while under a Low <math>I_0 (mW / cm^2) / longer$ exposure time, a 62.36% conversion for the top 5µm is obtained. The conversion difference between the two different top 5µm is now 14% for the 25µm film. Using the new approach, 3.62% average conversion difference from the two different experimental setting up is re-analyzed along with the depth of the cured film. An effect of a high UV light intensity lamp on the depth profile of conversion has been confirmed.

By using the new approach, a ratio of double bond conversion between top layer and bottom layer can be easily obtained, which is an important information for formulators as well as for PhI designers with respect to balance surface cure and through cure. Using a combination of a high UV intensity with short exposure time, the ratio is 0.84. Using a combination of a low UV intensity with long exposure time, the ratio is 0.68. A more uniformed cured film is gained with a curing condition of a high I_0 / short exposure time.

In Fig.11 is displayed the double bond conversion of the top $5\mu m$ and the bottom $5\mu m$ in a $25\mu m$ thickness film as a function of I₀ (mW / cm²). Without the oxygen inhibition and less filter effect from this clear formulation, a 92% conversion of the bottom $5\mu m$ is reached and is higher than that of the top $5\mu m$ under an influence of the oxygen inhibition. Surface curing (Top $5\mu m$) is mainly improved from 62% to 77% by increasing I₀ (mW / cm²).

a function of In (mW/cm²) with equal UV Dose (mJ/cm²). CF1 OPV in air

Conv. of top 5 microns Conv. of bottom 5 microns

4. **CONCLUSIONS**

This new approach has been used to analyze the double bond conversion using a "layer by layer" characterization of the photo polymerization for model formulations and commercial formulation. Using the statistical calculation and the traditional FTIR together, a gradient of depth profile of double bond conversion for model formulations and a commercial formulation can clearly be demonstrated.

For formulations using non-photo bleaching Irg. 184 as a PhI and commercial formulation in presence of air, there is a peak conversion (highest conversion) at middle 5 microns in this depth profile curve of conversion due to the least oxygen inhibition and filter effect in this depth. By increasing the UV Dose (mJ / cm^2) , the peak conversion (highest conversion) can be shifted from 15µm depth to 20µm depth for the same formulation. A benefit of high UV intensity / short exposure time is at the outermost part (top $5\mu m$) of a cured film. Increasing the UV Dose (mJ/cm²) cannot reduce the oxygen inhibition for the top 5µm. The efficiency of reducing oxygen inhibition at the top 5 μ m by using a high I₀ has been clearly demonstrated by using this new approach. With a high I₀, a more uniformed cured film was obtained in a 25µm film for evaluated formulations.

6. REFERENCES

- [1] Fouassier, Jean-Pierre, Photoinitiation, Photopolymerization, and Photocuring, P283, Hanser, NY., 1995
- [2] Scherzer, T., Applied Spectroscopy, 56 (11), 1403, 2002
- [3] Schrof, W., RadTech Europe 1997, Lyon, France, 535
- [4] Jessop, L. P. and Cai, Ying, Polymer, 6560, 2006
 [5] Jönsson, S. and Bao, R., 8th Fusion UV Seminar, Tokyo / Osaka, No. 2, 2000
- [6] Jönsson, S. and Bao, R., 9th Fusion UV Seminar, Tokyo / Osaka, No. 3, 2001
- [7] Jönsson, S. and Bao, R., 10th Fusion UV Seminar, Tokyo / Osaka, No. 3, 2002
- [8] Jönsson, S. and Bao, R., 13th Fusion UV Seminar, Tokyo / Osaka, No. 3, 2006