Achieving Adhesion to Difficult Metal and Plastic Substrates

RadTech NA 2014

Dr. Mike J. Idacavage, Joe Ciurlino and Charles Warrington
PL Industries
A division of Esstech, Inc.
May 12, 2014

Agenda

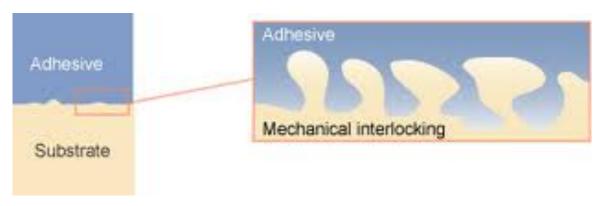
- Types of Adhesion
- Routes to Modifying Adhesion
- Focus on Chemical Adhesion
- Summary

UV/EB Coatings

Advantages

- Low/no VOC
- Reduced energy costs
- Shorter cure time
- Space savings
- Hardness, scratch resistance, chemical resistance

Challenges


- Adhesion to difficult substrates
- Spray application for coating post-formed items
- Corrosion (salt spray) resistance
- Pigmentation (UV at higher coating thickness)

Types of Adhesion

- Mechanical bonding
- Chemical bonding
- Electrostatic
- Dispersive
- Diffusive

Mechanical adhesion: A form of adhesive bonding during which adhesive material physically locks into the crevices of the surface.

- Increase roughness by abrading surface
- Chemically etch the surface
- Swell substrate to promote penetration of coating (Plastics)

Substrate wetting: The replacement of adherent air at the substrate surface by a liquid coating or ink material.

- Ideal: Substrate surface energy > coating surface tension
- Metals tend to have higher surface energy
- Increase surface energy
 - Clean oils, grease
- Decrease surface tension
 - Choice of monomer
 - Additives

Chemical adhesion: The coating chemically bonds with groups on the surface of the substrate.

- Use coupling agents
 - Reaction with substrate (e.g. silane acrylates)
- Intercoat adhesion
 - Under cure primer coat (residual acrylate groups)
 - Dual cure (e.g. acid/epoxy)
- Change the base chemistry
 - Cationic Cure
- Use polar groups
 - H-bonding

UV Cationic Curing

Cycloaliphatic Epoxide(s)
 basic coating properties

$$CH_2-O-C$$

Chemical adhesion: The coating chemically bonds with groups on the surface of the substrate.

- Use coupling agents
 - Reaction with substrate (e.g. silane acrylates)
- Intercoat adhesion
 - Under cure primer coat (residual acrylate groups)
 - Dual cure (e.g. acid/epoxy)
- Change the base chemistry
 - Cationic Cure
- Use polar groups
 - H-bonding

Typical Dental Adhesive Monomers

- High Performance
- Challenging Substrates
- High Quality Requirements

Approach to New Adhesion Modifiers

$$R_{R}^{1} O CH_{2}$$

Adhesion Promoter C

ASTM Method D3359 – 09

- Standard Test Methods for Measuring Adhesion by Tape Test
 - Apply formulation on substrate using a draw down bar.
 - UV cure using a Sunray 600 UV Flood Lamp with a 400W bulb
 - X-cut is made through the film to the substrate
 - pressure-sensitive tape (TESA 4124) is applied over the cut and then removed
 - adhesion is assessed qualitatively on the 0 to 5 scale

Metal Adhesion Results

Product	<u>Aluminum</u>	CRS	Stainless Steel
PL-2110 (A)	4A	4A	4A
PL-2122 (L)	5A	5A	5A
PL-2236 (N)	5A	5A	5A
PL-2179 (Q)	2A	1A	3A
PL-2155 (R)	4A	4A	4A
PL-2263 (O)	5A	5A	5A
PL-2317 (G)	1A	0A	1A
PL-2212 (M)	5A	5A	5A
PL-2349 (S)	5A	5A	5A

Metal Adhesion Results

Product	Tin Covered Steel	Tin Free Steel	Copper
А	0A	0A	0A
L	5A	*	5A
N	1A	5A	5A
Q	0A	*	1A
R	2A	4A	4A
0	0A	5A	5A
G	0A	0A	0A
М	5A	*	5A
S	4A	5A	5A

 $[\]ensuremath{^*}$ - Difficult to wet out, test results not valid

Plastic Adhesion Results

<u>Product</u>	<u>PVC</u>	<u>PET</u>	<u>Polycarbonate</u>
Α	5A	3A	*
L	0A	3A	0A
М	0A	5A	*
R	0A	3A	0A
0	0A	5A	0A
Q	0A	3A	0A
N	0A	5A	1A
G	5A	1A	5A

^{* -} Difficult to wet out, test results not valid

Acrylate vs. Methacrylate

<u>Product</u>	<u>PVC</u>	<u>PET</u>	<u>Polycarbonate</u>
Α	5A	3A	*
L	0A	3A	0A
М	0A	5A	*
R	0A	3A	0A
0	0A	5A	0A
Q	0A	3A	0A
N	0A	5A	1A
G	5A	1A	5A

^{* -} Difficult to wet out, test results not valid

L= Methacrylate, M = Acrylate with same polar group (A)

R = Methacrylate, O = Acrylate with same polar group (A)

Plastic Adhesion Results

Product	<u>ABS</u>	<u>PMMA</u>	<u>Nylon 6/6</u>
А	4A	0A	5A
L	0A	4A	2A
М	0A	0A	0A
R	0A	3A	3A
0	0A	0A	4A
Q	4A	4A	3A
N	5A	2A	5A
G	5A	3A	OA

^{* -} Difficult to wet out, test results not valid

Acrylate vs. Methacrylate

Product	<u>ABS</u>	<u>PMMA</u>	<u>Nylon 6/6</u>
А	4A	0A	5A
L	0A	4A	2A
М	0A	0A	0A
R	0A	3A	3A
0	0A	0A	4A
Q	4A	4A	3A
N	5A	2A	5A
G	5A	3A	0A

L= Methacrylate, M = Acrylate with same polar group (A)

R = Methacrylate, O = Acrylate with same polar group (A)

^{* -} Difficult to wet out, test results not valid

Adhesion to Glass

Product	Adhesion Results
Α	4A
L	5A
М	5A
R	4A
0	5A
Q	1A
N	5A

Improving Adhesion in Formulations

% Adhesive Promoter	<u>Aluminum</u>	<u>CRS</u>	<u>Stainless</u> <u>Steel</u>	Tin Free Steel	<u>Copper</u>
0	0A	0A	0A	0A	0A
2	3A	1A	0A	0A	0A
5	3A	3A	0A	1A	0A
8	3A	3A	2A	1A	1A
10	5A	5A	3A	3A	2A

Base Resin: Aliphatic Urethane Diacrylate Exothane 26

Adhesion Promoter: PL-2121

PI: 3% PL-460

Improving Adhesion in Formulations

% Adhesive Promoter	PET	<u>Polycarbonate</u>	<u>Nylon</u> <u>6/6</u>	ABS	<u>PMMA</u>	<u>Glass</u>
0	5A	3A	0A	1A	0A	0A
2	5A	3A	0A	1A	0A	0A
5	5A	3A	0A	2A	0A	0A
8	5A	4A	0A	3A	1A	1A
10	5A	5A	0A	5A	1A	1A

Base Resin: Aliphatic Urethane Diacrylate Exothane 26

Adhesion Promoter: PL-2121

PI: 3% PL-460

Approaches to Getting Adhesion

• Pretreatment:

Surface cleaning
Surface abrasion/roughening

- Wetting agents
 Surface energy of substrate 5-10 dynes/cm > than coating
- Primer
- Minimize shrinkage upon curing
- Use reactive, polar monomers

Thank You

Contact information:

Dr. Mike J. Idacavage

VP Business Development

PL Industries, a Division of Esstech Inc.

48 Powhattan Avenue

Essington, PA 19029 United States

1-610-442-6589

Mike.Idacavage@esstechinc.com

Booth 300