Effects of Photopolymerizable Prepolymer Architecture on Thermomechanical Properties

By Jon Scholte and Allan Guymon Chemical and Biochemical Engineering University of Iowa

Effects of Linear Polymer Structure on Blend Morphology

 Linear gradients have been shown to influence the resolution and size of polymer blend morphology.

2 Photopolymerizations
Conter

Effects of Linear Polymer Structure on Blend Morphology

 Linear gradients have been shown to influence the resolution and size of polymer blend morphology.

Architecture Directly Effect Network Formation

Controlled Radical Polymerization in Polymer Synthesis

Alkoxyamines

Initiator N

Mediating Radical

RAFT

Nitroxide Mediated Synthesis

 Nitroxide Mediated Polymerization requires 2 subsequent feeds to synthesize an end functionalized prepolymer

Reversible Addition Fragmentation Transfer (RAFT)Synthesis

 End functionalized species can be synthesized with a single feed and grows from the inside out

Synthesis of Random Copolymers

 Both Nitroxide and RAFT methods allow for the synthesis of randomly reactive prepolymers from a simple one pot method

Prepolymer Acrylation

Polymer	M _n	PDI	Functionality
N-End	11,000	1.4	8
N-Random	15,000	1.4	8
R-End	12,000	1.2	8

Both Architectures Allow High Conversions

End Formulations Show Multiple Glass Transitions

End functional formulations show large glass transition for butyl acrylate backbone and second for hdda domain

Multiple Domains Enhance Toughness

End Functionalized Samples Experience Less Creep

0.5 %wt DMPA 10 mW/cm² 6 min

20

Time (Min)

30

40

10

RAFT Synthesized Prepolymers Allow Rearrangement

 Rearrangement around Trithiocarbonate bond will allow for both relaxation and a greater distribution of soft segments through out the network

• If rearrangements are occurring, they would compete with propagation and thus alter reaction kinetics

Network Rearrangements Compete with Propagation

RAFT rearrangement retards the polymerization at high prepolymer concentations

Conversion Lowers with Increased Transfer

Network rearrangement prevents complete cure in RAFT formulations

Nitroxide Formulations Display Multiple Regimes

Rearrangement around RAFT group diminishes phase separation and leads to gradual decreases in storage moduli

Nitroxide Prepolymers Increased Butyl Acrylate Domains

RAFT rearrangement diminishes primary butyl acrylate glass transition

RAFT Process Relieves Internal Shrinkage Stress

RAFT Process Allows for Less Permanent Deformation

Time (min)

Rearrangments Allow for Highly Crosslinked Materials

Transfer in random systems produces extremely robust films allowing for further tuning of the systems.

Conclusions

 Nitroxide and RAFT processes can be used to make functional Prepolymers.

N-End 60 wt%

 Architecture of prepolymer molecules directly effects morphology

 RAFT processes allows smaller soft domains and network relaxation producing tougher more robust films

Acknowledgements

- Guymon Group
- The Unversity of Iowa
- IUCRC

Conclusions

 Nitroxide and RAFT processes can be used to make functional Prepolymers.

N-End 60 wt%

N-End 70 wt% N-End 80 wt%

 Architecture of prepolymer molecules directly effects morphology

 RAFT processes allows smaller soft domains and network relaxation producing tougher more robust films

