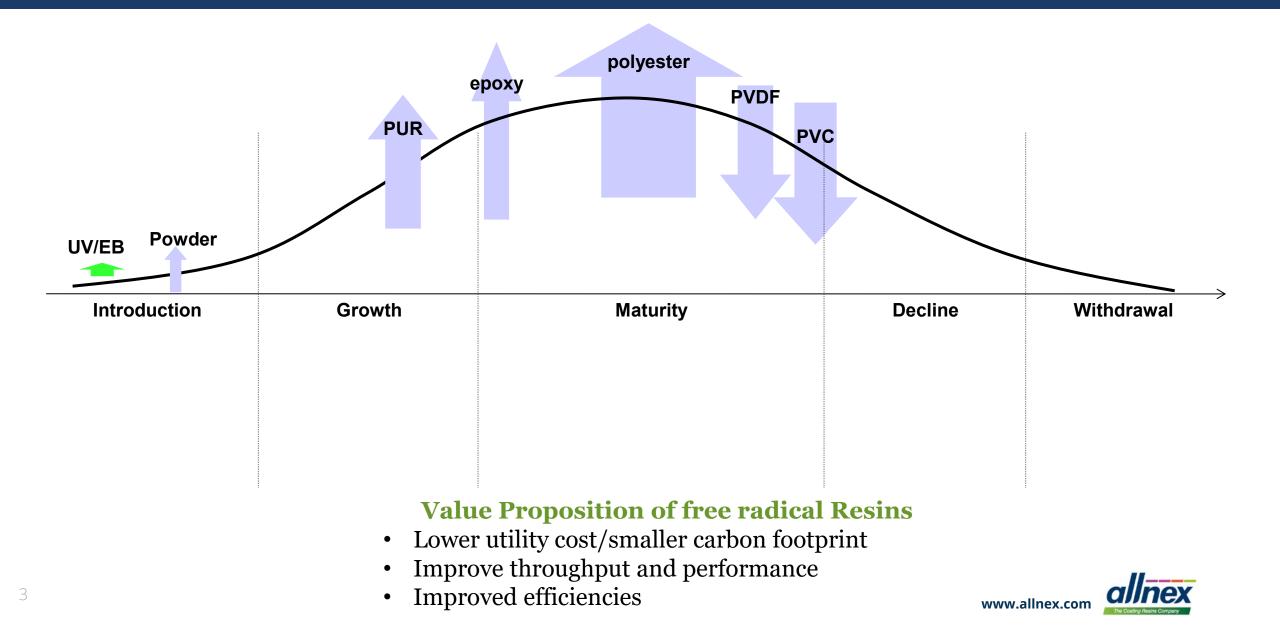
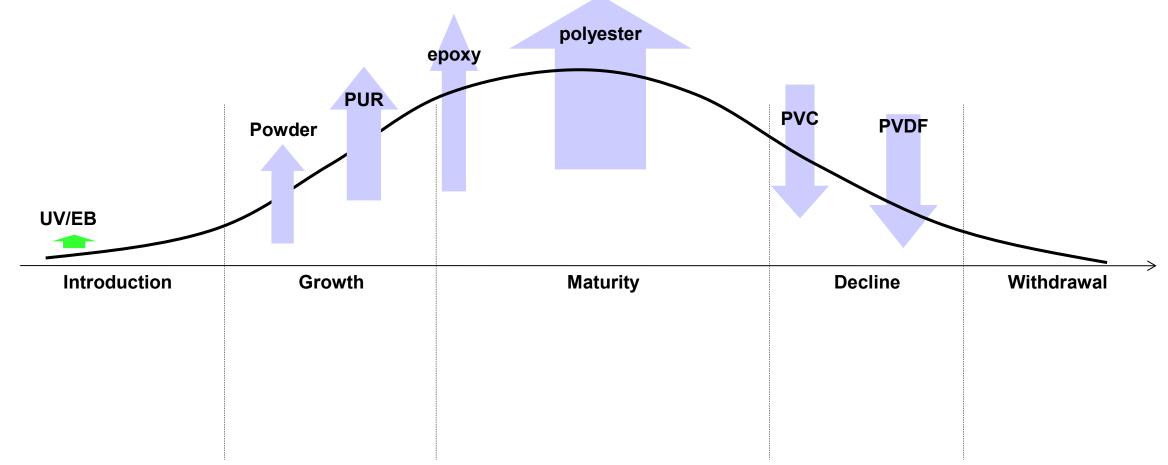
FREE RADICAL SYSTEMS (UV/EB) FOR COIL RADTECH 2024


Introduction

- Introduction to free radical technology
- Early developments of energy-curable systems for coil
- Technical advancement leading to Gen II products for coil


Conclusion

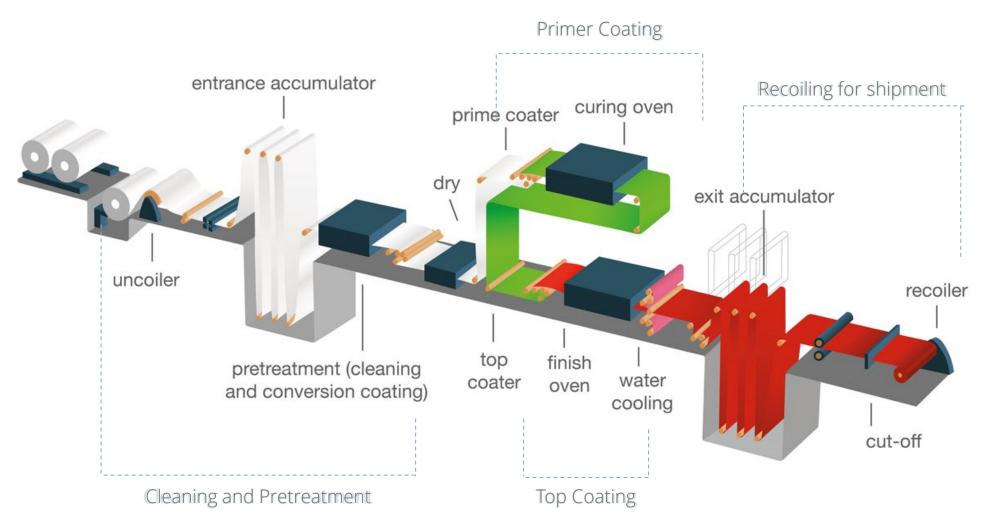
Coil coating product life-cycle 2005

Coil coating product life-cycle 2023

What is different in 2023 versus 2005 for UV/EB Resin in Coil Coatings

- Environmental changes
- Brand owners' market pull through for free radical Resins
- Improved throughput

4


• Environmental Friendly

Introduction

COATING TECHNOLOGY	LAYER	CROSSLINKER	ADVANTAGE	DISADVANTAGE
Polyester Topcoat ami		amino	versatile system interior and exteriorgood to excellent formability	• well-balanced profile, no particular disadvantages
1C PUR	Topcoat and Primer (PES systems)	blocked polyNCO	 high flexibility, meet special forming requirements. advantage vs amino – weather resistance and max achievable thickness (35 μm) 	• low surface hardness
Ероху	Primer Backcoats	amino	excellent metal adhesionexcellent corrosion protectionExcellent hardness	 disappointing flexibility bad weather resistance
Acrylics	Carrier PVC plastisol	polymer dispersions	• Used in automotive as Top coat	• limited adhesion to metal, therefore formulated with PER or epoxy resins.
PVDF	Topcoat high performance	dissolved in acrylic resins (70:30)	 extremely good weathering resistance top-quality high UV durability excellent formability low dirt pick-up, high chem. resist. 	• Fluorine emissions arising from the scrapping of PVDF-coated metal sheets have attracted criticism
PVC Plastisol			• used where corrosion protection is paramount (marine applicaitons)	• halogen emissions
UV/EB	Primer Top coat	free radical	no solvent, good flexibilityfast cure, efficiency,	still some limitation in viscositynot many products outdoor resistance

How UV/EB can fit within the coil process

Cleaning and Pretreatment

- Bare metal is uncoiled
- Coil splicing
- Accumulator stack (entry)
- Metal degreasing, cleaning rinsing & chemical pretreatment
- Drying oven

Primer coating

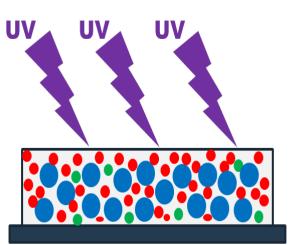
- Primer unit one or both sides
- Curing oven

Top coating

- Coating unit-top coat applied on one or both sides
- Curing oven

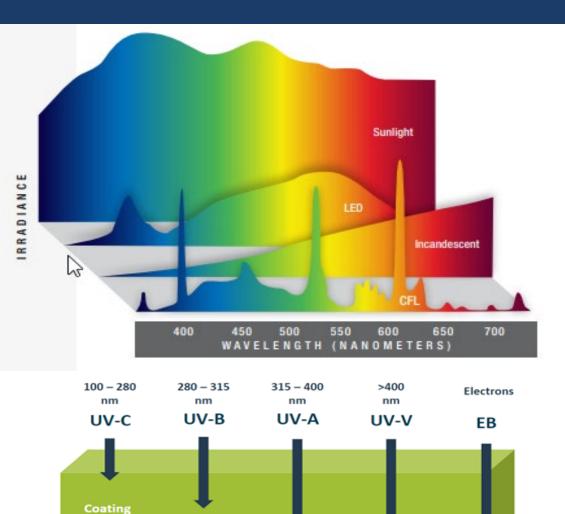
Laminating or embossing

• Laminating – one or both sides or embossing

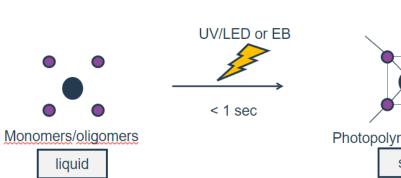

Recoiling for shipment

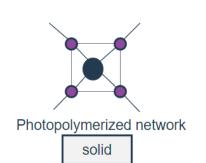
- Accumulator stack (exit)
- Recoiling finished metal

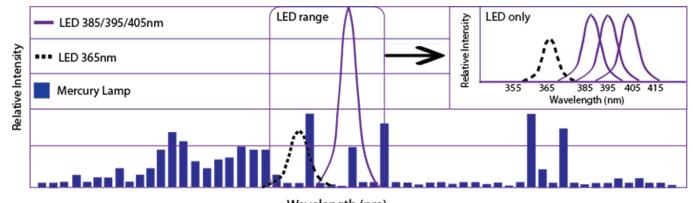
Introduction to UV/EB curing


- Energy savings
- Space limitation
- Productivity increase
- Environment compliance
- Performance level
- Appearance quality
- Heat-sensitive substrate

- Oligomers (poly-unsaturated)
- Monomers (mono- or poly-unsaturated)
- Photoinitiators


<u>Figure</u>: formation of a high crosslinking density hardcoat by energy-induced radical polymerization of acrylated monomers and oligomers in the presence of a photo-initiator (UV-light) or not (Electron beam)




- Different parts of the UV spectrum can penetrate to different depths of the coating
- The right photoinitiator choice will initiate the reaction in the entire coating
- EB does not need a photoinitiator.

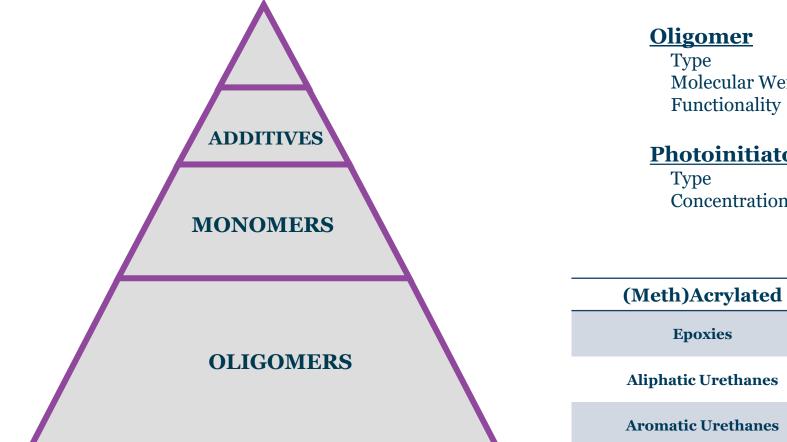
Substrate

Introduction to UV/EB curing

Wavelength (nm)

UVC	UVB	UVA	VISIBLE LIGHT	INFRARED
100-280nm	280-315nm	315-400nm	400-700nm	700-1800nm

	UV	LED
Lifetime (h)	1000-2,000	> 20,000
Environmental	Mercury Waste Ozone Generation	Mercury Free Ozone Free
Input Power	Large	Small (~ half)
On / Off	Minutes	Instant
Heat generation (substrate)	High	Low


E-beam cure offers the highest double bond conversion rate

	UV	Electron Beam
Investment	Medium	High
Nitrogen	Optional	Necessary
Photoinitator	Yes	No
Matting	"Easy"	Difficult
Cure 1 mm clear	Possible	Limited
Cure 200 µ pigmented	No	Yes

Info Phoseon

Introduction to UV/EB curing

ALL COMPONENTS INFLUENCE FINAL PROPERTIES

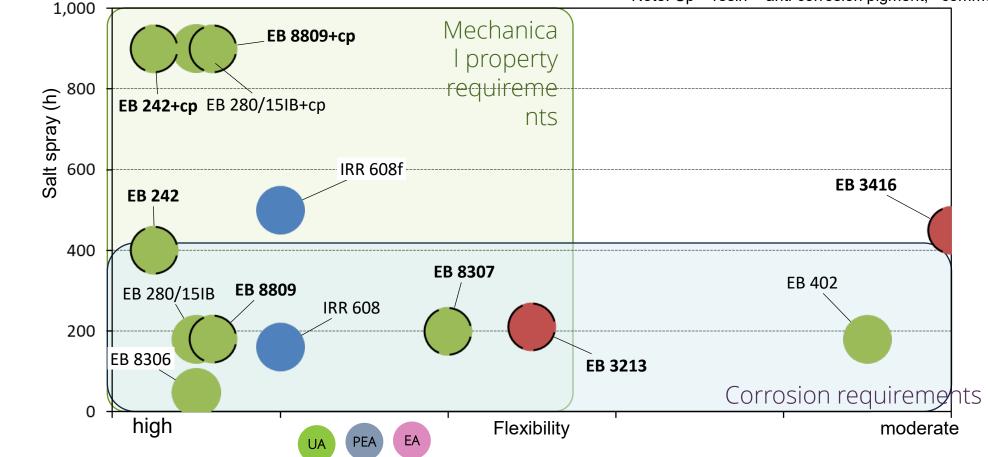
Molecular Weight

Photoinitiator (UV Cure)

Concentration

Monomer

Reactive Diluent Functionality


Other Components
Additives
Pigments
Formulator Expertise
Formulator Specific

(Meth)Acrylated	Characteristics	
Epoxies	Economical, fast curing, hard, solvent resistance; BPA issue	
Aliphatic Urethanes	Flexible, tough, non-yellowing, best weathering properties	
Aromatic Urethanes	Flexible, tough, lower cost than aliphatic urethanes	
Polyesters	Good pigment wetting properties, lower viscosities, good printing properties	
Specialty Polyesters Good adhesion, special applications		
Amines	Faster cure speed; mitigate oxygen inhibition	
Acrylics	Good weathering; low shripkeen allnex	

Gen I free radical for coil

Allnex resins developed for Coil coatings Commercial – no longer commercial

Note: Cp = resin + anti-corrosion pigment; commercial grades

- Outstanding flexibility but limited adhesion due to poor surface treatment
- Good corrosion resistance but with Cp
- Poor durability results due to low cross link density
- Limited products in the toolbox

Gen I Challenges for free radical for coil

Adhesion

- Direct to metal
 - Cleaning of the process oils
- Primer
 - Chemistry not robust to adhesion to multiple primer types

- Lack of data
- Limited resistance

Performance

- Weatherability
 - Best weathering tends to be softer materials
- Flexibility
 - High flexibility systems tend to be high mw or low crosslink density

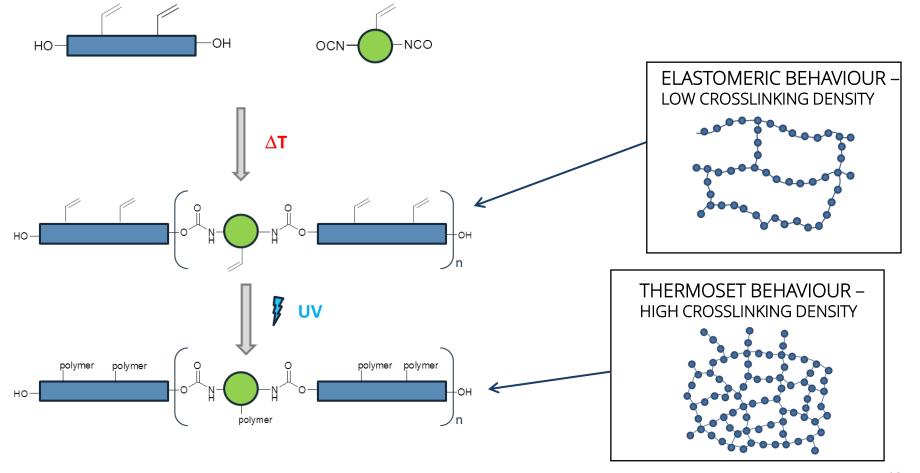
Viscosity

- Resin performance
 - Performance properties diminished after dilution

Coating layers and their function

LAYER	TECHNOLOGY	THICKNESS	FUNCTION
bare metal	Steel or Al	0.4 - 2 mm	substrate
metallic coating	HDG (Zn/Fe), EZ	5 - 25 µm	corrosion resistance
temporary protection	mineral oil	n.a.	temporary protection from oxidation
conversion layer (pre-treatment)	chromatation or phosphatation (Galvanite)	< 1 µm	corrosion resistance adhesion of coating
primer/base coat	PES, Epoxy	5 - 15 µm	corrosion resistance base coat
top coat	PES, PU, Epoxy PVC plastisol, PVDF	20 - 200 µm	protection decoration
backcoat	PES	10 µm	
lamination	PET film foil	120 µm	protection, gloss (home appliances)
embossing	patterned steel roll	n.a.	decoration, finish

Next-gen free radical systems for coil


What makes the free radical system feasible now Cleaning protocol improvements coil

- Lower equipment cost for e-beam
- Chemistry advancements over the past 18 years
- High functionality and flexibility
- Dual cure technology marrying conventional and free radical chemistries
- Waterborne UV that offers water release that can be on par with solventborne

Dual cure free radical for coils

The coating system consists of a conventional NCO/OH thermal curing followed by UV/EB curing of acrylate groups after the thermoforming step

free radical for dual cure

Free radical dual cure advantages

Can be combined with conventional 2k offering formul Thermal cure typically completed by solvent evaporatic Elongation after thermal >300% and after cure 10% Substrate can be rolled up, taken offline, abrasion and Pot life can be 8 hours

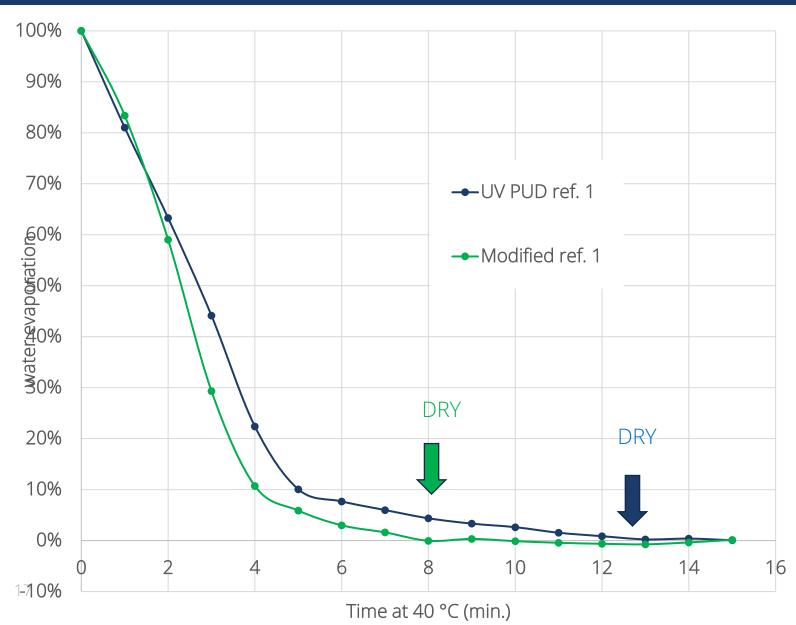
Acrylic and urethane-based chemistries offering outsta

20 µm dry on Veralite 200 (PETG) substrate

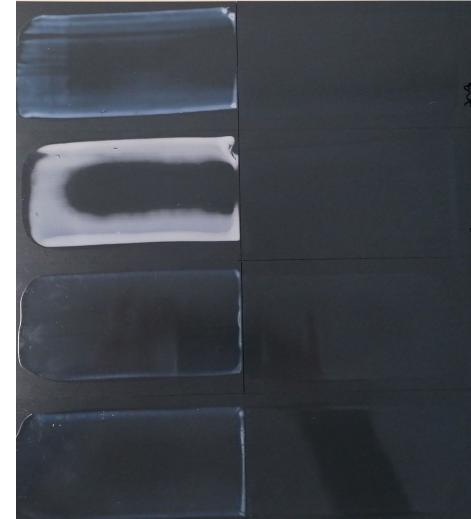
	Free radical	Conv. Dual Cure	Free radical 2k
Touch dry after oven tack free : fingerprint (5 : no mark)	5 (UV cure)	5	5
Thermoformability			
Cylinder 1 cm (50 % elongation)	pass	fail	pass
Cylinder 3 cm (150 % elongation)	fail	fail	pass
Cylinder 5 cm (200 % elongation)	fail	fail	pass
Cylinder 8 cm (300 % elongation)	fail	fail	pass
		www.allnex.cor	The Coating Resids Company

free radical waterbase for coil

High DOI and gloss can now be achieved in clears

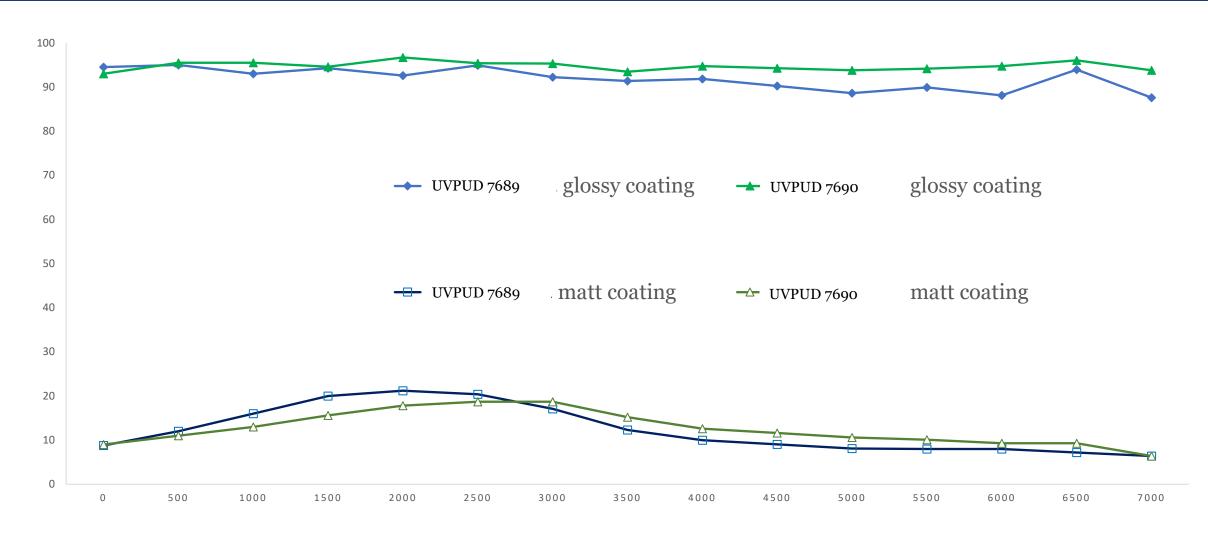

Improve outdoor durability

Improved water release that makes it possible on much shorter lines


Water release similar to solventborne

free radical waterbase – Faster water release

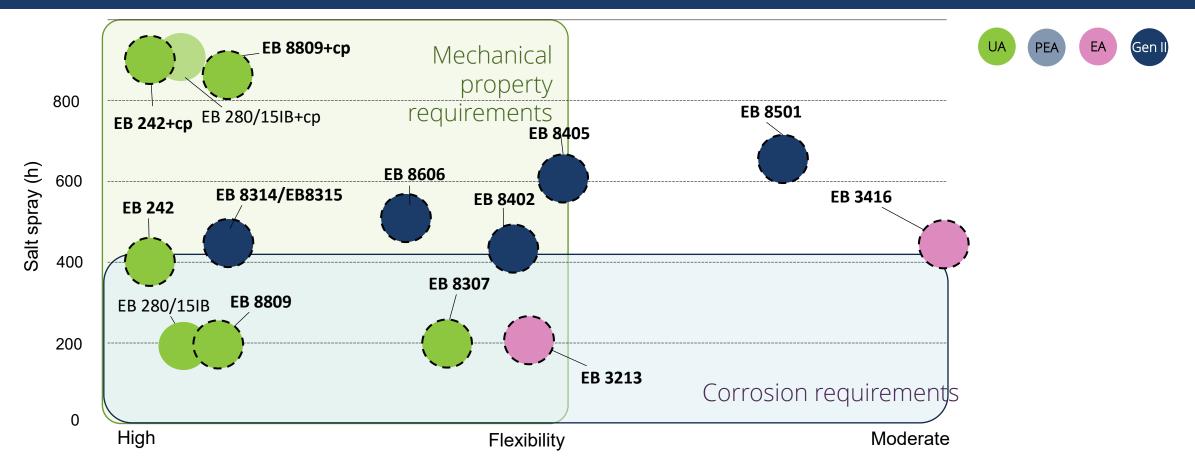
One-third less time to obtain nondetectable water by NIR


free radical waterbase for metal

	7 Days DFT –		Cest- ASTM B-	117		U
	1	\setminus /	\ /	1	1	
A REAL PROPERTY AND		\mathbf{N}			\bigvee	Т
1		$\cdot \wedge$	\wedge		\wedge	I
		$\langle \rangle$		4		F
5,	/cm= x /	1.03 J/cm* x 2	1.64 5 km × 1	1.64	5/cm+ x 2	Р
			be designed to			P
		cellent adhesi Ils and salt spr	on to a variety av resistance			P
	analogo	ous to convent	ional water-			Т
		· · · · ·	urethanes with	1	Direct Imp	
	increas hardne	ed chemical re ss	sistance and		tape applie	
	-indi di le				Reverse In	nn

- Persoz hardness: 280 seconds
- MEK double rubs: >100 (1kg)

	UVA 2807	45.6%
1	UVA 7655	45.6%
	White corrosion inhibiting pigment	1.20%
	TiO ₂	1.00%
\wedge	Iron oxide black pigment	0.50%
. \	Fumed silica	0.35%
5/cm+ x 2	PI	1.37%
	PI 2 (longer wavelength)	0.46%
	Pigment dispersant	3.00%
	Thickener	0.90%
Direct Imr	act test, 20 inch-lb, 1/2" diameter ball, then 3M #600/610	
tape applie		OK
Reverse In tape applie	npact test, 20 inch-lb, 1/2" diameter ball, then 3M #600/610 ed	small removal
Crosshatch	adhesion (Scotch 600 tape)	o% removal


free radical waterbase for exterior

No film defects after 7000 hrs of Xenon No difference in evolution of gloss for the two versions

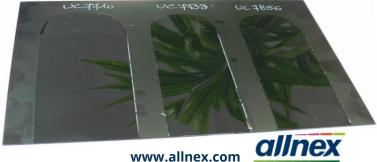
Gen II free free radical systems for Coil

GEN II Resins focus on exterior durability and bridging the gap between hardness and flexibility

EB 8314 and **EB 8315** are moderate viscosity (<*10k cps at 25*°*C*) aliphatic urethane acrylates that offer a combination of flexibility (>100%) and acrylate functionality (3)

EB 8501 is a tetra-functional aliphatic urethane that offers excellent adhesion to metal and excellent pigment loading for a urethane acrylate **EB 8606** and **EB 8405** are tetra-functional urethane acrylates that offer an excellent combination of flexibility (>40%) and acrylate functionality plus outstanding outdoor durability

Gen II free radical developments for coil


	Acrylate Functionality	Elongation, %	Tensile, psi	Xenon Weathering, hrs	Viscosity at 25°C
EB 8314	4	110	6000	7000	14000
EB 8315	4	115	5000	7000	9200
EB 8402	2	50	3300	6000	14000
EB 8405	4	30	4000	10000	85000
EB 8501	4	28	4200	5000	36000
EB 8606	4	70	5000	8000	90000
EB 242N	2	186	4000	1000	2000
EB 8809	2	24	5000	6000	187000

- Gen II represents a new free radical chemistry platform
 - Unique backbones that reduce volume metric shrinkage upon cure through lower chain entanglement
 - Higher glass transition temperature to improve outdoor durability
 - Lower hydrogen bonding for lower intrinsic viscosities

Free radical chemistry is now ready to meet today's challenges in coil Lower carbon footprint Increased productivity

- Chemistry advancements that offer
- Dual cure creating the best of both worlds
- High-performance free radical waterbased that can offer fast water release, high DOI/gloss, and excellent weatherability
- Free radical system can be designed to meet some of the most challenging exterior and durability needs

Thank You

Marcus Hutchins

Marcus.hutchins@allnex.com

Telephone: 770-280-8391

